Joaquin Sandalinas - До предела чисел. Эйлер. Математический анализ.

Здесь есть возможность читать онлайн «Joaquin Sandalinas - До предела чисел. Эйлер. Математический анализ.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: sci_popular, Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

До предела чисел. Эйлер. Математический анализ.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «До предела чисел. Эйлер. Математический анализ.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению. Также Эйлер обновил и установил систему математических обозначений, которые очень близки к современным. Он обладал обширными знаниями в любой области науки; его невероятный ум оставил нам в наследство непревзойденные труды, написанные в годы работы в лучших академиях XVIII века: Петербургской и Берлинской.

До предела чисел. Эйлер. Математический анализ. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «До предела чисел. Эйлер. Математический анализ.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
В книге Маскерони содержится знаменитая задача Наполеона считается что сам - фото 17

В книге Маскерони содержится знаменитая задача Наполеона (считается, что сам Наполеон предложил ее математику). Она состоит в том, чтобы в данной окружности определить вершины квадрата, используя только циркуль.

Если мы попробуем решить эту задачу простым сложением, а наклеек достаточно много, то на это уйдет слишком много времени, и ошибок не избежать, даже используя калькулятор. Лучше применить способ Эйлера и сложить только два слагаемых:

1 + 1/2 + 1/3 + ... + 1/n = γ + ln n.

ПОСТОЯННАЯ у И ПРОСТЫЕ ЧИСЛА

Постоянная у встречается гораздо реже, чем я или е. Несложно найти формулу, которая связывает все три постоянные:

Сам Эйлер тоже нашел взаимосвязи между у и дзетафункцией Существуют - фото 18

Сам Эйлер тоже нашел взаимосвязи между у и дзета-функцией:

Существуют также формулы связывающие напрямую ус простыми числами как - фото 19

Существуют также формулы, связывающие напрямую ус простыми числами, как, например, формула Франца Мертенса (1840-1927):

где р простые числа Таким образом в ней задействованы у дзета функция и - фото 20

где р — простые числа. Таким образом, в ней задействованы у, дзета- функция и простые числа. Нет сомнений, что третья постоянная Эйлера имеет большое значение, которое со временем будет только возрастать.

Логарифм можно вычислить на калькуляторе, а γ в данном случае можно округлить до 50 знаков:

0,57721566490153286060651209008240243104215933593992...

Можно привести еще один, более абстрактный пример: чтобы узнать, сколько делителей п в среднем есть между 1 и n, можно использовать выражение In n + 2γ - 1. Это приближение становится тем точнее, чем больше значение я и чем больше у него делителей.

ФОРМУЛА ЭЙЛЕРА — МАКЛОРЕНА В ДЕТАЛЯХ

Формула Эйлера — Маклорена может произвести пугающее впечатление. Обычно она записывается так:

где В k числа Бернулли a f x производные от f Применение формулы состоит - фото 21

где В k— числа Бернулли, a f (x)— производные от f. Применение формулы состоит в том, что из правой части можно получить значения даже медленно сходящихся рядов. Эйлер использовал этот трюк в решении Базельской задачи, как мы увидим ниже.

СУММА, КОТОРАЯ СУММИРУЕТ НЕСУММИРУЕМОЕ

В 1735 году, во время своего первого российского периода, Эйлер сделал последнее из своих важных открытий в области анализа. Он вывел полезнейшую формулу, которая позволяет получать приблизительное значение интеграла, заменяя его на сумму, или приблизительное значение суммы, заменяя ее на интеграл. Независимо от Эйлера ее также открыл шотландский ученый Колин Маклорен. Так называемая формула Эйлера — Маклорена работает следующим образом: пусть дана функция f(x). Когда говорят о ее сумме, обычно имеют в виду две части, связанные между собой, но разные. Если использовать целые значения, то получится сумма

а когда ее складывают по всем х получается интеграл in 0 nƒxdx - фото 22

а когда ее складывают по всем х, получается интеграл:

i(n) = ∫ 0 nƒ(x)dx.

Кажется очевидным, что между s(n) и i(n) существует связь, но первая является дискретной суммой, а вторая — непрерывной. Формула Эйлера — Маклорена во многих случаях позволяет перейти от одной к другой. Если мы знаем s(n), то можем получить значение i(n), а если знаем i(n), можем высчитать s(n).

БАЗЕЛЬСКАЯ ЗАДАЧА: НАЧАЛО

По приезду в Петербург Эйлер получал 300 рублей, которых хватало на оплату проживания, дров для камина и масла для ламп. После того как он сменил Даниила Бернулли на посту профессора математики в 1733 году, Академия подняла его жалованье до 600 рублей. В том же году эта сумма еще увеличилась: Эйлер начал давать частные уроки и по предложению барона фон Мюнниха работать председателем экзаменационной комиссии в местной кадетской школе. Стабильное финансовое положение, сложившееся благодаря его новым обязанностям, позволило Эйлеру жениться на Катерине Гзель, дочери Георга Гзеля, художника швейцарского происхождения, работавшего в Академии искусств по особому приглашению Петра I. Церемония бракосочетания прошла 27 декабря 1733 года, после чего молодожены переселились в деревянный дом, "превосходно обставленный", по словам самого Эйлера, на Васильевском острове, недалеко от Академии наук. Через год у них родился первенец, Иоганн Альбрехт. Его крестным отцом стал фон Корф, бывший в то время президентом Академии. Этот факт свидетельствует о большом уважении, с которым относились к Эйлеру, что неудивительно, учитывая его огромный вклад в науку. Но это было еще не все. Буквально год спустя, в 1735-м, Эйлер поразил математическое сообщество гениальным озарением: он нашел решение Базельской задачи.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «До предела чисел. Эйлер. Математический анализ.»

Представляем Вашему вниманию похожие книги на «До предела чисел. Эйлер. Математический анализ.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «До предела чисел. Эйлер. Математический анализ.»

Обсуждение, отзывы о книге «До предела чисел. Эйлер. Математический анализ.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x