Ее цель — замена людей на ряде однообразных, а также слишком тяжелых для человека или просто опасных операций. Тело робота состоит из механических элементов из металла или пластика и двигается благодаря сервомотору. Нервная система сформирована электропроводами, в венах течет смазывающее масло. Его мозг не просто похож на компьютер — это и есть компьютер. Однако часто встречается ошибочное представление о том, что робот должен походить на человека (в узком понимании посудомоечная машина — тоже робот). Робот должен отвечать трем основным характеристикам.
1. Его можно запрограммировать, как и компьютер.
2. Он должен быть машиной, способной выполнять конкретные действия в окружающей его среде.
3. Он должен быть гибким.
Третье свойство вытекает из двух предыдущих, так как, с одной стороны, подразумевает способность оперировать широким спектром программ, а с другой — взаимодействовать со средой разными способами.
Робот, играющий на фортепиано. Шанхайский музей науки и техники, Китай.
КЛЕТОЧНЫЙ АВТОМАТ
Клеточный автомат — это математическая абстракция клеточных процессов, которые наблюдаются в живых организмах. Его можно определить как динамическую систему, состоящую из двух компонентов: пространства клетки и правил поведения.
По определению клеточное пространство — это пространство фон Неймана, в котором его элементы, называемые клетками, находятся в состоянии, определяемом либо конечным числом значений {v1 ..., vn}, либо любым непрерывным значением. Это определение может показаться немного путаным, но его цель — показать, что даже если результат выглядит как очень простая игра, он не лишен математического формализма. Но чтобы выражаться понятнее, сведем рассуждения к простой формулировке, которая и используется в теоретических описаниях. Для начала пространство фон Неймана становится двумерным, чтобы его можно было представить на листке, в котором каждый квадратик обозначает клетку. Из двух множеств значений мы не будем рассматривать непрерывное множество, так как весь процесс происходит во внутренних механизмах компьютера, а они всегда работают с дискретными величинами. Из возможных множеств {v1 ..., vn} этих дискретных значений оставим только два — {1, 0}. Первое означает, что клетка жива, второе — что она мертва. Мы также можем выбрать два разных цвета. Итак, возьмем лист бумаги в клетку и ограничим нашу зону работы, например, квадратом со стороной 7 клеток. Затем возьмем черный фломастер и закрасим клетки (см. рисунок 1 на следующей странице).
КИБЕРНЕТИКА
Кибернетика — это наука, изучающая различные формы коммуникации, которые могут возникать между двумя механизмами, и законы, управляющие коммуникацией между человеком и машиной. Отцом кибернетики считается венгерский математик Норберт Винер (1894-1964). В 1948 году он написал книгу «Кибернетика, или Управление и связь в животном и машине», которая стала бестселлером и позволила автору улучшить свое — до этого нестабильное — материальное положение.
Норберт Винер.
У нас появится пространство, в котором есть живые клетки, обозначенные черным цветом, и мертвые, обозначенные белым. Теперь остается только установить правила развития, то есть детально описать, как эти клетки будут развиваться в своей среде. Если вышеупомянутый рисунок представляет собой фазу 1, у нас должен быть какой-то критерий, чтобы перейти к фазе 2 и, разумеется, чтобы перейти от фазы 2456 к фазе 2457. Говоря математическим языком, нам нужен алгоритм, который, если известно состояние фазы N, позволяет сконфигурировать состояние фазы N + 1. Поскольку в нашей решетке на данный момент нет никаких странных элементов вроде пакменов или тому подобных, на каждую из наших клеток могут действовать только другие клетки из ее окрестности. Одна из самых простых окрестностей — это окрестность по сторонам света (север, юг, запад, восток); то есть клетка может взаимодействовать только с клетками, расположенными над ней, под ней или по сторонам от нее. В этом случае она называется окрестностью фон Неймана. Если к этому мы прибавим диагонали, то получим так называемую окрестность Мура. Становится понятно, что возможности определения окрестностей почти безграничны. Мы можем сказать, например, что влиять будут только клетки, которые находятся на определенном расстоянии г. Существуют очень сложные правила окрестностей, которые описываются посредством матричных функций, но мы их не будем рассматривать в этой книге. Начнем с вышеуказанного клеточного пространства и определим правила, которые действуют для окрестности Мура.
Читать дальше