Enrique Rodriguez - Камень, ножницы, теорема. Фон Нейман. Теория игр.

Здесь есть возможность читать онлайн «Enrique Rodriguez - Камень, ножницы, теорема. Фон Нейман. Теория игр.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2015, Издательство: Де Агостини, Жанр: sci_popular, Биографии и Мемуары, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Камень, ножницы, теорема. Фон Нейман. Теория игр.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Камень, ножницы, теорема. Фон Нейман. Теория игр.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Джон фон Нейман был одним из самых выдающихся математиков нашего времени. Он создал архитектуру современных компьютеров и теорию игр — область математической науки, спектр применения которой варьируется от политики до экономики и биологии, а также провел аксиоматизацию квантовой механики. Многие современники считали его самым блестящим ученым XX века.

Камень, ножницы, теорема. Фон Нейман. Теория игр. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Камень, ножницы, теорема. Фон Нейман. Теория игр.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

р┐ϵ Т.

У множества T, разумеется, больше трех элементов — их бесконечное количество, поэтому

T┐ϵ T.

Следовательно, это пример множества, принадлежащего самому себе.

Тогда Рассел вводит следующее множество R:

«R состоит из множеств, которые не являются элементами самих себя».

Исходя из предыдущих примеров, мы имеем:

M┐ϵ R и T┐ϵ R.

В этом случае вопрос Рассела звучит так:

R┐ϵ R?

Если ответ да, то R не может быть элементом R, так как содержит само себя и, следовательно, не принадлежит само себе. Если же ответ нет, то множество R не принадлежит само себе. Таким образом, в любом случае мы получаем элемент, который одновременно и принадлежит, и не принадлежит некоему множеству, что является парадоксом, или, выражаясь языком логики, противоречием. Проблема, лежащая в его основе, заключалась в том, что в рамках теории Кантора ничто не запрещало образовывать такие множества, как множества Рассела. Следовательно, надо было создать такую аксиоматику, которая не оставила бы места множествам такого типа.

МЕТОД ФОН НЕЙМАНА

Немецкий логик и математик Эрнст Цермело (1871-1953) сформулировал семь аксиом, с помощью которых не только хотел придать логическую основательность теории множеств, но и избежать таких спорных ситуаций, как в парадоксе Рассела. Для этого Цермело дал определение основным понятиям и их отношениям. За аксиому принималось существование самого множества, пустого множества, объединения и пересечения множеств, а также части множества. Таким образом гарантировалось точное существование множеств, на которых можно было основываться и которые позволяли доказать фундаментальные для анализа теоремы. В то же время из игры исключались ненадежные множества, которые могли привести к парадоксам.

Бертран Рассел один из основателей аналитической философии Портрет маслом - фото 11

Бертран Рассел, один из основателей аналитической философии. Портрет маслом кисти Роджера Фрая, 1923 год.

В Геттингенском университете фон Нейман фотография 1940х годов познакомился - фото 12

В Геттингенском университете фон Нейман (фотография 1940-х годов) познакомился с Давидом Гильбертом, чьи труды оказали на него большое влияние.

Медная гравюра на которой изображено здание Гёттингенского университета и - фото 13

Медная гравюра, на которой изображено здание Гёттингенского университета и библиотеки. Около 1815 года.

Позже теория множеств Цермело была дополнена и расширена Абрахамом Галеви Френкелем (1891-1965). Так появилась система аксиом, ставшая известной как аксиоматика Цермело — Френкеля. Пользуясь сравнением Анри Пуанкаре (1854-1912), теперь овцы были окружены забором, который защищал их от волков, оставшихся снаружи, но при этом было неизвестно, не спрятался ли какой-нибудь волк внутри. Другими словами, система Цермело — Френкеля позволяла создавать все необходимые для математики множества, но не исключала вероятности существования множеств, принадлежащих самим себе, — затаившихся внутри ограды волков.

Существует такое бесконечное множество А, которое не является слишком большим.

Джон фон Нейман

Фон Нейман предложил для решения этой проблемы два способа, которые дополняли друг друга: аксиому регулярности и понятие класса. Обе эти модели он изложил в 1928 году в своей докторской диссертации Die Automatisierung der Mengenlehere {«Аксиоматизация теории множеств»), которую защитил в Будапештском университете.

При помощи аксиомы регулярности и следуя аксиомам Цермело фон Нейман строил множества снизу вверх, так, что если одно множество принадлежало другому, то оно обязательно было первым в последовательности. При этом исключалась вероятность того, что множество принадлежит само себе. Важно подчеркнуть, что метод, использованный фон Нейманом для демонстрации этого результата, стал фундаментальным для многих доказательств теории множеств и используется по сей день.

Другой его метод, связанный с понятием класса, состоял в использовании функций для определения множеств.

ФУНКЦИЯ ПРИНАДЛЕЖНОСТИ

Функция принадлежности, применяемая для множества, принимает только два значения — 0 и 1 — исходя из заданного критерия. Его устанавливают так, что все элементы, принимающие значение 1, — это именно те, что составляют множество, которое мы хотим определить. Рассмотрим множество всех четных чисел. С помощью функции с его можно определить следующим образом: с (4) = 1; с (7) = 0; с (31) = 0; с (220) = 1. То есть функция с равна 1, когда применяется к четному числу, и 0 — когда к нечетному (см. рисунок). Таким образом, множество всех четных чисел — это множество, образованное всеми числами, для которых функция принадлежности принимает значение 1. Следовательно, множества можно определять с помощью функций.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Камень, ножницы, теорема. Фон Нейман. Теория игр.»

Представляем Вашему вниманию похожие книги на «Камень, ножницы, теорема. Фон Нейман. Теория игр.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Камень, ножницы, теорема. Фон Нейман. Теория игр.»

Обсуждение, отзывы о книге «Камень, ножницы, теорема. Фон Нейман. Теория игр.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x