(100 a + 10 b + с ) - (100 c + 10 b + а ).
Два члена с буквой b сокращают друг друга, так что промежуточный результат равен
99 a - 99 c , или 99( a - c ).
На своем начальном уровне алгебра не предполагает особо глубоких озарений, однако требует соблюдения ряда правил. Цель всего происходящего состоит в том, чтобы применять эти правила, пока выражение не станет максимально простым. Выражение 99( a - c ) приведено именно в такой вид, в какой нужно.
Поскольку первая и последняя цифры в числе abc различаются по крайней мере на 2, получаем, что а - с может иметь одно из значений 2, 3, 4, 5, 6, 7 или 8.
Тем самым, число 99( a - с ) — одно из следующих: 198, 297, 396, 495, 594, 693 или 792. С какого бы трехзначного числа мы ни начали, вычитание его из числа, записанного с помощью его же цифр, взятых в обратном порядке, даст промежуточный результат, который непременно будет равен одному из семи перечисленных чисел.
Заключительный этап состоит в том, чтобы сложить это промежуточное число с тем, которое получается из него изменением порядка цифр на противоположный.
Повторим то, что мы делали выше, в применении к промежуточному числу.
Пусть наше промежуточное число равно def, то есть 100 d + 10 e + f Требуется сложить def и fed.
Рассматривая приведенный список возможных промежуточных чисел, мы замечаем, что среднее число e всегда равно 9. Кроме того, первая и третья цифры всегда дают в сумме 9 — другими словами, d + f = 9.
Итак, def + fed равно
100 d + 10 e + f + 100 f + 10 e + d,
или
100( d + f ) + 20 e + d + f,
что есть
(100 × 9) + (20 × 9) + 9.
Или, другими словами,
900 + 180 + 9.
Вуаля! Сумма равна 1089 — и секрет фокуса раскрыт.
Элемент неожиданности в «фокусе 1089» состоит в том, что, какое бы число мы случайно ни выбрали, в ответе всегда получается одно и то же. Алгебра позволяет увидеть то, что скрыто за ловкостью рук, указывая путь, ведущий от конкретного к абстрактному, то есть предлагая следить не за поведением отдельного числа, а за поведением любого, произвольного числа. Это незаменимое средство, причем не только в математике. Другие науки также полагаются на язык уравнений.
* * *
В 1621 году во Франции вышел латинский перевод Диофантова шедевра «Арифметика». Новое издание оживило интерес к античным методам решения задач и в сочетании с усовершенствованными числовыми и буквенными обозначениями распахнуло двери в новую эру математического мышления. «Арифметика» Диофанта стала настольной книгой Пьера де Ферма [36] де Ферма́ Пьер (1601–1665) — выдающийся французский математик, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. Получил юридическое образование, с 1631 года занимал пост советника парламента в Тулузе. Ко всему прочему был блестящим полиглотом. ( Примеч. ред. )
(1601–1665), тулузского судьи и страстного математика-любителя, исписавшего поля всех ее страниц своими комментариями. В частности, рядом с разделом, где говорилось о Пифагоровых тройках — любых натуральных числах а, b и с , таких что а 2 + b 2 = с 2 (например, 3, 4 и 5), — Ферма отметил, что невозможно подобрать такие значения а , b и с , чтобы выполнялось равенство а 3 + b 3 = с 3 . Не смог он найти и значения а, b и с , для которых было бы верно а 4 + b 4 = с 4. В результате Ферма написал — там же, на полях «Арифметики», — что для всякого числа n, превышающего 2, невозможно найти значения а, b и с, которые удовлетворяли бы уравнению а n + b n = c n . «У меня имеется поистине чудесное доказательство, однако эти поля слишком узки для него», — написал он. Ферма так и не представил своего доказательства — чудесного или уж как получится, — даже когда узость полей его более не стесняла. Заметки Ферма на полях «Арифметики» отчасти указывают на то, что доказательство ему было известно, или же он сам уверовал, что его знает, а может, просто решил подзадорить публику. Во всяком случае, его нахальное заявление оказалось невероятной силы приманкой для многих поколений математиков, а само утверждение, вошедшее в науку как Великая теорема Ферма, оставалось самой знаменитой нерешенной задачей в математике до 1995 года, когда ее наконец продавил британец Эндрю Уайлс. Алгебра бывает обманчиво скромной в подобных ситуациях — она позволяет легко сформулировать задачу, которую решить оказывается совсем не легко. Вот и доказательство теоремы Ферма, предложенное Уайлсом, столь сложно, что, судя по всему, его понимают не более пары сотен человек во всем мире.
Читать дальше