Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики

Здесь есть возможность читать онлайн «Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2012, ISBN: 2012, Издательство: КоЛибри, Жанр: sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
  • Автор:
  • Издательство:
    КоЛибри
  • Жанр:
  • Год:
    2012
  • Город:
    Москва
  • ISBN:
    978-5-389-01770-2
  • Рейтинг книги:
    4 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Алекс в стране чисел. Необычайное путешествие в волшебный мир математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Алекс в стране чисел. Необычайное путешествие в волшебный мир математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Алекс Беллос, известный журналист, многие годы работавший для «Guardian», написал замечательную книгу о математике. Книга эта для всех — и для тех, кто любит математику, и для тех, кто считает ее невероятно скучной и далекой от жизни. Беллосу удалось создать настоящий интеллектуальный коктейль, где есть и история, и философия, и религия, и конечно же математика — чудесные задачки, которые пока не решишь, не заснешь!

Алекс в стране чисел. Необычайное путешествие в волшебный мир математики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Алекс в стране чисел. Необычайное путешествие в волшебный мир математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В своей «La Geometrie» Декарт вводит символы, ставшие затем стандартными алгебраическими обозначениями. Это первая книга, которая выглядит как современная публикация по математике, со всеми ее а, b и с , а также иксами, игреками и зетами. Именно Декарт решил использовать малые буквы из начала алфавита для известных величин, а малые буквы из конца алфавита — для неизвестных. Однако когда книгу набирали в типографии, наборщику в какой-то момент стало не хватать букв. Он поинтересовался у автора, насколько важно, какую именно букву нужно использовать — x, у или z. Декарт ответил, что это все равно, и наборщик использовал в основном букву x, потому что во французских словах эта буква используется реже, чем у или z. В результате x прочно поселился в математике — и даже на более широком культурном пространстве — в качестве обозначения, символа неизвестной величины. Именно поэтому материалы о паранормальных явлениях попадают в « X -файлы» [33] Телесериал «X-files» в русском переводе получил название «Секретные материалы». ( Примеч. перев. ) , а Вильгельм Рентген предложил назвать обнаруженные им таинственные лучи X -лучами [34] X -rays — общепринятое английское название рентгеновских лучей. ( Примеч. перев. ) Если бы не сиюминутные обстоятельства, касающиеся типографского набора текста, то словом для пробивающегося «звездного» таланта мог бы стать « Y -фактор», а афроамериканский политический лидер приобрел известность под именем Malcolm Z [35] Малколм Икс (1935–1965) — американский борец за права темнокожих. Малколм Литл сменил фамилию на букву «Икс», символизирующую потерю знания о собственном происхождении. ( Примеч. перев. ) .

То, что Лука Пачоли в 1494 году выразил бы как

4 Census p 3 de 5 rebus ae 0,

а Виет в 1591 году записал бы как

4 in A quad - 5 in A piano + 3 aequatur 0,

Декарт в 1637 году застолбил в виде

4 x 2- 5 x + 3 = 0.

* * *

Замена слов буквами и символами представляла собой нечто большее, чем просто удобное сокращение записи. Начало символу x положило сокращение для «неизвестной величины», но коль скоро такое обозначение возникло, оно превратилось в мощное средство, способствующее мышлению. Просто слово или сокращение нельзя подвергнуть математическим операциям так, как это делается с символом, подобным x. Появление числа сделало возможным счет; но буквенные символы вывели математику в новую область, простирающуюся далеко за пределы языка.

Пока задачи формулировались риторически, как это было в Египте, математики применяли изобретательные, но довольно бессистемные методы для их решения. Древние решатели задач были подобны участникам экспедиции, застрявшим в тумане и вынужденным полагаться лишь на несколько ухищрений, помогающих продвигаться вперед. Когда же задачи стали формулировать, используя символы, туман этот рассеялся, и перед математиками предстал мир с исключительно ясными очертаниями. Диво алгебры состоит в том, что порой одна лишь запись задачи в символическом виде уже почти дает ее решение.

Вернемся к тому фокусу, о котором я рассказал в начале главы. Я попросил вас назвать трехзначное число, в котором первая и последняя цифры различались бы по крайней мере на два. А далее требовалось получить второе число, переставив цифры в исходном числе в обратом порядке.

Затем надо было вычесть меньшее число из большего. Так что если вы выбрали число 614, то число с переставленными цифрами было бы равно 416, и 614 - 416 = 198. В качестве последнего действия предлагалось сложить полученную разность и число, получающееся в результате перестановки в ней цифр в обратном порядке. В только что выбранном примере это будет 198 + 891.

Как и раньше, ответ равен 1089. Таким он будет всегда — и алгебра объясняет нам почему. Но прежде всего нам надо выработать способ для записи нашего главного героя — трехзначного числа, в котором первая и последняя цифры различаются по крайней мере на два.

Рассмотрим число 614. Оно равно 600 + 10 + 4. На самом деле любое трехзначное число вида abc можно записать как 100 a + 10 b + с. Итак, пусть наше исходное число есть abc, где а, b и с — отдельные цифры. Для удобства будем считать, что а больше c .

Переставление цифр дает cba, что можно выразить как 100 c + 10 b + а.

Для получения промежуточного результата требуется вычесть cba из abc. Получаем, что abc - cba равно

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Алекс в стране чисел. Необычайное путешествие в волшебный мир математики»

Представляем Вашему вниманию похожие книги на «Алекс в стране чисел. Необычайное путешествие в волшебный мир математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Алекс Беллос
Отзывы о книге «Алекс в стране чисел. Необычайное путешествие в волшебный мир математики»

Обсуждение, отзывы о книге «Алекс в стране чисел. Необычайное путешествие в волшебный мир математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x