Отношение Шарпа (The Sharpe Ratio)
Популярной мерой производительности, получаемой из процента отдачи, является отношение Шарпа, разработанное Уильямом Шарпом, и которое определяется как годовая отдача (мера прибыльности) за вычетом неподверженного риску отношения отдачи, поделенная на годовое стандартное отклонение от отдачи (мера вола-тильности). Некоторые удаляют неподверженное риску отношение отдачи, так что проверьте это прежде, чем сравнивать результаты. Чем выше отношение Шарпа, тем выше отдача и ниже волатильность. Как правило, консультанты по товарной торговле вычисляют отношение Шарпа на месячных данных. Мы понимаем, что отношение Шарпа имеет свои ограничения (например, увеличение волатильности в восходящем направлении даст понижение отношения Шарпа), но, тем не менее, это самый распространенный индекс такого рода. Может быть, вам будет полезно сравнить результаты одной системы с другой и сравнить ваши результаты с результатами профессиональных консультантов. Лучшей системой будет не та, что делает больше денег, а та, что дает более высокое отношение Шарпа.
Отношение Стерлинга (The Sterling Ratio)
Поскольку, отношение Шарпа имеет определенные недостатки, были разработаны другие статистические приемы для беспристрастной оценки производительности. Наиболее популярным из таковых является отношение убытка к размеру отдачи. Отношение Стерлинга было создано Дианом Джонсом из Jones Commodities. Формула следующая:
Основным недостатком отношения Стерлинга является то, что оно обычно вычисляется ежегодно и, следовательно, слишком медленно реагирует на изменения производительности.
Отношение Калмара (The Calmar Ratio)
Отношение Калмара, изобретенное Терри Янгом из СМА Reports, представляет собой размер отдачи за последние 36 месяцев, поделенный на максимальный убыток на том же периоде. Оно вычисляется ежемесячно, что делает его более чувствительным, чем отношение Стерлинга,
Среднее геометрическое
Наверное, самым математически точным измерением потенциала торговой системы является среднее геометрическое Ральфа Вайнса. Среднее геометрическое измеряет фактор роста вашей торговой системы. Чем выше среднее геометрическое, тем более вероятно, что ваша система будет давать большую отдачу при дополнительном инвестировании. Для любой системы со средним геометрическим более 1 вы можете увеличить отдачу на ваш счет до максимума путем вычисления оптимальной f, оптимальной фиксированной части вашего наибольшего проигрыша, для использования в качестве ставки на каждой торговле. У нас нет места для вывода геометрического среднего и оптимальной f, мы также не можем разъяснить все с той же элегантностью, что и Вайнс. Мы считаем, что его книга является одним из самых значительных достижений в области управления денежными средствами на фьючерсных рынках.
Заметьте, что ваша система может быть прибыльной на большинстве рынков и убыточной на нескольких из них. Один наш знакомый консультант по товарной торговле проводит операции на всех рынках, которые он тестировал (выигрышных и убыточных), и утверждает, что кривая изменения его счета становится глаже от этого разнообразия. Он умышленно ищет отрицательную корреляцию между товарами в портфеле и находит, что прибыльные периоды на его проигрышных рынках обычно совпадают с проигрышными периодами на его выигрышных рынках. Торговая система не будет прибыльной на всех рынках постоянно. Если вы ее правильно разработали, то убытки на проигрышных рынках будут минимальными, и, кроме того, эти рынки будут время от времени давать прибыльные периоды.
Будьте осторожны при тестировании большого количества рынков, а затем конструировании портфеля на одних только выигрышных контрактах. Это обычный прием поставщиков систем, когда результаты являются чистой фантазией, несмотря на то что это может произвести впечатляющую запись о вашей исторической производительности. Это, очевидно, является еще одной формой подстраивания под кривую.
Тестирование для получения определенных результатов
Торговую систему необходимо разрабатывать с нуля, чтобы она достигла определенных значений критериев производительности. Вероятно, наиболее важными из возможных целей являются процент выигрышей и отношение среднего выигрыша к среднему проигрышу. Эти критерии могут быть использованы для вычисления вероятности провала (FOR - probability of ruin), которая дает вам некоторое представление о надежности вашей системы. Большая часть программного обеспечения для тестирования дает и другие полезные данные. Ниже приведено их перечисление с комментариями.
Читать дальше