Согласно законам физики, заряженные частицы, в том числе электроны, в магнитном поле должны двигаться вдоль направления поля по винтовым траекториям, как бы накручиваясь на магнитные силовые линии. Можно сказать, что под воздействием внешнего магнитного поля траектория движения электрона искривляется в соответствии с хорошо известным каждому школьнику правилом левой руки. И чем больше напряженность магнитного поля, тем меньше радиус витка такой спирали. А частица, движущаяся по криволинейной траектории, должна отдавать свою энергию в виде электромагнитного излучения.
Это явление было давно предсказано теоретически, а затем экспериментально наблюдалось в специальных установках — ускорителях частиц — синхротронах и бетатронах. По названию одной из этих установок подобный механизм излучения получил название синхротронного.
Энергия синхротронного излучения распределяется по длинам волн неравномерно. Положение ее максимума на шкале электромагнитных волн зависит от энергии частицы и напряженности магнитного поля. Электроны, разгоняемые в синхротронах и бетатронах до скорости, близкой к световой (такие электроны называются релятивистскими), начинают интенсивно светиться («светящийся» электрон). При тех условиях, которые создаются в земных лабораторных установках, максимум излучения этих релятивистских электронов лежит в оптической части спектра. Такое излучение обладает целым рядом интересных особенностей. Оно сосредоточено в узком конусе, направленном в сторону движения электрона. Чем больше скорость, а следовательно, и энергия электрона, тем этот конус уже, излучение сосредоточено в более остром угле. Релятивистский электрон является как бы микроскопическим, направленно излучающим прожектором.
Межзвездные магнитные поля очень слабы; их напряженность не превышает сотых долей эрстеда. Поэтому радиус витка спирали космического релятивистского электрона, движущегося в таком поле, очень велик, и максимум энергии соответствующего синхротронного излучения попадает в область радиоволн метрового диапазона. Таким образом, в условиях межзвездного пространства релятивистские электроны — это уже не маленькие прожекторы, а крошечные остронаправленные радиоантенны. Совокупное движение релятивистских электронов в Галактике, сопровождающееся радиоизлучением, образует, например, одну из составляющих галактического фона излучения.
Роль синхротронного механизма нетеплового радиоизлучения в космосе, теоретически исследованного главным образом советскими учеными, очень велика. Многие объекты Вселенной, где протекают активные физические процессы, являются источниками энергичных релятивистских частиц, которые, попадая в магнитные поля, порождают интенсивное радиоизлучение.
Освоение радиодиапазона потребовало от астрономов и создания соответствующей приемной аппаратуры. Появились специальные устройства для улавливания и регистрации космических радиоволн — радиотелескопы.
Устройство антенны радиотелескопа в принципе не отличается от устройства отражающего зеркала оптического телескопа-рефлектора, только «радиозеркало» не стеклянное, а металлическое. Как известно, при шлифовке зеркал, предназначенных для собирания света, требуется колоссальная точность. Так, например, теоретически допустимое отклонение от рассчитанной формы для зеркала шестиметрового телескопа составляет всего лишь одну двадцатую долю микрометра. Это объясняется тем, что электромагнитные волны чувствительны к неоднородностям, размеры которых сравнимы с длиной их волны. Поэтому для очень коротких волн, а именно таковы световые лучи, требования, к отражающей поверхности весьма жестки.
Иное дело радиоволны, длина которых значительно больше. При обработке зеркал, которые должны собирать такие волны, — антенн радиотелескопов — вполне можно удовлетвориться и значительно меньшей точностью. Поэтому антенны современных радиотелескопов обладают намного большими размерами, чем зеркала телескопов оптических.
Иногда радиотелескопы строят с неподвижными антеннами, направленными в определенный участок неба. Но, благодаря суточному вращению Земли, через этот участок за 24 часа проходит целая полоса небесной сферы.
Хотя создавать телескопы с неподвижными антеннами и проще, у таких инструментов есть определенные недостатки. С их помощью за сутки можно «просмотреть» лишь узкую полоску неба, в которую заведомо не попадет большая часть радиоисточников, интересующих наблюдателя. Но и те радиоисточники, которые окажутся в этой полоске, будут находиться в зоне приема всего какую-нибудь минуту. А этого явно недостаточно.
Читать дальше