Ученые нашли выход из положения: при радиоастрономических наблюдениях со сверхдлинными базами сигналы, принятые каждым инструментом, записываются на магнитную ленту, а затем доставляются в одно место и синтезируются с помощью ЭВМ.
Осенью 1969 г. советскими и американскими астрономами были проведены совместные радиоинтерференционные исследования компактных внегалактических объектов. Были использованы 22-метровый радиотелескоп Крымской обсерватории в Симеизе и расположенный на расстоянии около 8 тыс. км от него 42-метровый радиотелескоп Национальной радиоастрономической обсерватории США в Грин-Бэнк.
Разрешающая способность этой системы составила 5·10 -4секунды дуги. Чтобы представить себе наглядно, что это значит, достаточно сказать, что под таким углом видна из Симеиза обычная канцелярская кнопка, находящаяся в Грин-Бэнк. Это намного больше того разрешения, которое способны обеспечить самые крупные современные оптические телескопы!
Применение радиоинтерферометров со сверхдлинными базами позволило довести разрешающую способность радиоприемных систем до одной десятитысячной секунды дуги, что примерно в 10 тысяч раз превосходит разрешающую способность оптических телескопов.
Если бы такой разрешающей способностью обладал обычный оптический телескоп, то с его помощью можно было бы разглядеть 10-копеечную монету на расстоянии 4 тыс. км.
Если же говорить не об угловых, а о реальных пространственных размерах тех наиболее «мелких» деталей различных астрономических объектов, которые можно выделять с помощью подобных радиотелескопических систем, то для объектов, расположенных на расстоянии 300 млн. световых лет [3] Световой год — расстояние, которое свет проходит за один год; 1 световой год = 9,46·1012 км.
) от Земли — это примерно один световой год, а на расстоянии квазаров — 100 световых лет.
Однако при создании радиоинтерферометров со сверхдлинными базами ученые ограничены естественными масштабами земного шара. Для еще большего увеличения базы необходимо по крайней мере одну из антенн вынести в космос.
Как известно, первый опыт создания космического радиотелескопа — КРТ-10 («Космический радиотелескоп с поперечником антенны 10 м») был осуществлен на советской орбитальной станции «Салют-6».
Вполне реальными представляются и проекты создания внеземных интерферометров, где одна из антенн будет расположена, например, на поверхности Луны, а другая на Земле или искусственном спутнике. По мнению многих специалистов, возможности интерферометрии со сверхдлинными базами при дальнейшем совершенствовании измерительной техники принесут наиболее интересные результаты в радиоастрономии обозримого будущего.
В «промежутке» между видимым светом и радиоволнами «заключено» инфракрасное излучение, с длинами волн от 0,74 мкм до 1–2 мм. Источниками этого излучения являются тела, обладающие температурой от 20 до 5000 кельвинов.
Таким образом, подавляющее большинство космических объектов являются источниками излучения в инфракрасном диапазоне. К примеру, около 50 % солнечного излучения приходится на инфракрасную область.
Особенно ценную информацию инфракрасное излучение несет о таких космических объектах, которые не удается наблюдать в других диапазонах электромагнитных волн, в частности, о холодных звездах.
Еще одно важное достоинство инфракрасного излучения состоит в том, что оно хорошо проходит сквозь межзвездную среду, т. е. пыль и газ, заполняющие межзвездное пространство. Поэтому в инфракрасном диапазоне можно получать изображения таких космических объектов, которые нельзя наблюдать с помощью обычных оптических телескопов. Именно таким путем советскими астрофизиками было, впервые получено изображение ядра Галактики — центральной части нашей звездной системы.
В земной атмосфере есть небольшое «окно прозрачности», расположенное в инфракрасном диапазоне. Воздушная оболочка нашей планеты пропускает излучение с длинами волн от 8 до 13 мкм. Но все же основная часть инфракрасных космических излучений атмосферой, задерживается, и поэтому подлинное развитие инфракрасной астрономии началось тогда, когда появились технические средства, способные выносить измерительную аппаратуру на большую высоту за пределы плотных слоев земной атмосферы.
Исследования в инфракрасном диапазоне позволили получить весьма ценные сведения, пополнившие наши знания об атмосферах планет Солнечной системы, о свойствах лунной поверхности, о пылевых туманностях, а также о многих других космических объектах…
Читать дальше