Есть, однако, еще один путь проникновения в прошлое. Дело в том, что минувшее не исчезает совершенно бесследно. В той или иной степени оно отражено в настоящем.
В природе мы встречаемся с закономерностями, которые можно разделить на две группы. Первую составляют общие законы природы, которые действуют всегда, когда для этого складываются определенные условия. К числу подобных законов относятся, например, закон всемирного тяготения, законы движения Ньютона, законы Кеплера и т. п. Вторая группа — закономерности, действующие в данной конкретной материальной системе, сложившиеся в процессе ее эволюции. Эти закономерности в наибольшей степени связывают современное состояние данной системы с ее предшествующими состояниями, настоящее с прошлым. Поэтому выявление и изучение подобных закономерностей может дать наиболее ценную информацию об истории той или иной материальной системы.
Применительно ко Вселенной это означает, что ключ к познанию ее прошлого — в изучении современного состояния космических объектов. Не всякое прошлое, не всякая предыстория могла привести Вселенную к тому состоянию, которое мы наблюдаем сегодня, в современную эпоху.
Можно сказать, что в первоначальной сверхплотной плазме, в результате расширения которой образовалась наша Вселенная, были как бы запрограммированы ее основные свойства. Это не была, разумеется, железная предопределенность классической механики — в дальнейшей эволюции немалую роль играли случайные процессы, но все же «основной сценарий» развития Вселенной содержался в ее начальном состоянии. Иными словами, далеко не всякое начальное состояние могло в дальнейшем породить именно ту структуру Вселенной и те ее свойства, которые мы наблюдаем в настоящую эпоху.
Другой путь — построение моделей начальных фаз нашей Вселенной с помощью фундаментальных физических теорий. В основе этих теорий лежит огромный экспериментальный и наблюдательный материал, они прошли многократную практическую проверку, и в их справедливости не приходится сомневаться. Разумеется, когда мы распространяем эти теории за границы, в которых их применимость надежно доказана, экстраполируем их на необычные области явлений, полученные результаты не могут считаться абсолютно надежными. Тем не менее подобным методом приходится пользоваться, поскольку для познания прошлого у науки слишком мал выбор средств.
Более того, как отмечает в одной из своих статей Я. Б. Зельдович, требования современной космологии растут быстрее, чем накапливаются соответствующие экспериментальные данные. Поэтому космологам в своих теоретических изысканиях приходится пользоваться не только общепринятыми фундаментальными физическими теориями, но также и такими, которые еще нельзя считать достаточно строго обоснованными.
Создавая различные теоретические модели Вселенной, в том числе и ранних стадий ее расширения, и сопоставляя их с данными о современном состоянии Вселенной и ее объектов, полученными в результате астрономических наблюдений, ученые имеют возможность совершенствовать эти модели, вносить в них необходимые поправки и уточнения, отбрасывать предположения, вступающие в противоречие с современными данными, и таким образом постепенно восстанавливать картину эволюции от самых ранних ее этапов до нашей эпохи. При этом наибольший интерес представляют такие черты современной Вселенной, которые с полным правом можно назвать удивительными загадками.
Вот одна из них. Как уже говорилось выше, современная Вселенная в достаточно больших масштабах однородна и изотропна. Это значит, что свойства ее любых достаточно больших областей приблизительно одинаковы, а любые направления равноправны.
Но однородность Вселенной в больших масштабах требует специального объяснения. Дело в том, что никакие физические взаимодействия не могут распространяться со скоростью, превосходящей скорость света, которая, как известно, конечна и равна 300 000 км/ с. Отсюда, между прочим, следует, что доступная непосредственному наблюдению область Вселенной всегда конечна. Мы не можем видеть объекты, удаленные от нас на такие расстояния, которые световой луч не успевает преодолеть за время существования Вселенной.
В связи с этим говорят о «горизонте», расширить который мы не можем никакими техническими ухищрениями: ведь он определяется не уровнем совершенства астрономических инструментов, а конечной скоростью распространения света. Хотя, разумеется, по мере старения Вселенной оптический горизонт постепенно отодвигается.
Читать дальше