Весьма необычна и циклическая модель, разработанная одним из учеников Эйнштейна Уилером. И в этой модели Вселенная пульсирует, то сжимаясь, то раздуваясь, но всякий раз она возрождается из сверхплотного «сгустка» в ином виде, с иными характерными параметрами, даже с иным набором элементарных частиц. Любопытно, что во Вселенной Уилера вообще нет времени в обычном понимании этого слова — нет настоящего и будущего. Поэтому в такой Вселенной возможны любые парадоксы — они здесь в порядке вещей.
Никто, разумеется, не станет утверждать, что одна из перечисленных выше моделей — это и есть точное описание нашей Вселенной. Да на это они, пожалуй, и не претендуют. Идет поиск. Нащупываются новые направления, оцениваются и переоцениваются различные идеи, осмысливаются новые факты и тем самым выявляются новые грани окружающего нас мира. Многое в циклических моделях в той или иной мере условно. За исключением одного вопроса, который имеет самое непосредственное отношение к свойствам нашей реальной Вселенной, — вопроса о том, сменится ли ее расширение сжатием? Для того чтобы это произошло, общая масса во Вселенной должна быть достаточно велика — тогда ее притяжение будет тормозить разбегание галактик и, в конце концов, должно остановить их разлет и повернуть эти звездные системы вспять. Со временем такой «обратный» процесс опять приведет к созданию сверхплотной сингулярности. С подобным вариантом мы уже встречались в циклических моделях.
Какой же вариант соответствует действительности, в какой Вселенной — открытой или замкнутой — мы живем?
Подсчеты, основанные на общей теории относительности, дают на этот счет вполне определенный численный критерий. Мысленно соберем всю массу Вселенной и равномерно «размажем» ее по всему пространству. Если после этой операции средняя плотность окажется меньше, чем 3·10 -29г/см 3, то силы тяготения недостаточны для того, чтобы остановить разбегание галактик, и Вселенная расширяется неограниченно. Если же средняя плотность превысит этот предел (критическое значение), то расширение Вселенной со временем сменится сжатием.
Какими данными располагает современная астрофизика относительно фактической величины средней плотности во Вселенной? Если учесть «светящееся», т. е. видимое, вещество, то его средняя плотность равна 10 -31г/см 3. Попытки учесть и другие формы существования материи в зависимости от подхода к решению задачи приводят к значениям средней плотности, несколько отличающимся друг от друга. Все они, в общем, ниже критического значения., но некоторые из них к нему довольно близки.
Важнейшее значение для определения средней плотности будет иметь решение вопроса о наличии конечной массы у нейтрино.
Одной из важнейших и, прямо скажем, увлекательнейших задач современной науки является изучение самых ранних этапов эволюции нашей Вселенной, в значительной мере предопределивших ее дальнейшее развитие. Но если вспомнить, что эти этапы отделены от нас весьма внушительным промежутком времени, составляющим по современным оценкам 15–20 млрд. лет, то станет понятно, сколь сложна подобная задача.
Тем не менее современная астрофизика располагает по крайней мере двумя путями к ее решению. Один из них путь прямых наблюдений. Да, да, как ни покажется странной такая возможность — возможность непосредственного наблюдения событий, происходивших миллиарды лет назад, — в астрофизике она существует. Кстати, ничего подобного нет, пожалуй, ни в одной другой области естествознания. Правда, геологи могут непосредственно изучать отложения далеких эпох, палеонтологи — остатки давно исчезнувших животных, а археологи — предметы древних культур. Но хотя все эти объекты и имеют древнее происхождение, наблюдать и изучать их удается уже в нашем времени.
Иное дело в астрофизике, Благодаря конечной скорости распространения электромагнитных волн, чем дальше находится от нас тот или иной космический объект, тем в белее отдаленном прошлом мы его наблюдаем. Радиогалактика в созвездии Лебедя предстает перед нами такой, какой она была около 700 млн. лет назад, а некоторые радиоисточники мы наблюдаем с опозданием, по-видимому, на 10 и более млрд. лет.
Таким образом, регистрируя различные электромагнитные излучения, приходящие на Землю из глубин космоса, мы в принципе можем получать непосредственную информацию о ранних стадиях эволюции Вселенной.
Читать дальше