В расширяющейся Вселенной
В одной из своих статей В. Л. Гинзбург так формулирует основную проблему современной космологии: изучить структуру пространства в больших масштабах и найти закон эволюции Вселенной во времени.
Теперь, когда мы познакомились с некоторыми выводами общей теории относительности, в частности, с искривлением пространства и черными дырами, мы можем еще раз обратиться к одному, из самых поразительных явлений окружающего нас астрономического мира — расширению Вселенной.
Астрономические данные свидетельствуют о том, что мы живем в мире разбегающихся галактик. Воображаемый наблюдатель, в какой бы галактике он ни находился, отметил бы, что все остальные звездные системы от него удаляются. Таким образом, «разбегание» оказывается как бы всеобщим свойством нашей Вселенной. Но если галактики разбегаются, то что было много миллиардов лет назад? Логично предположить, что современное состояние Вселенной возникло из состояния более плотного. В пользу подобного предположения говорят не только наблюдения (разбегание галактик) — к такому же выводу приводит и теория.
Одно точное решение уравнений теории Эйнштейна мы уже рассмотрели. Оно описывало гравитационное поле, создаваемое статической массой вещества, и привело нас к заключению о возможности существования «черных дыр». Это решение было получено К. Шварцшильдом в 1916 г. и носит его имя.
Не менее важным и фундаментальным является решение уравнений общей теории относительности в предположении об однородности и изотропности Вселенной, полученное советским ученым А. А. Фридманом в 1922 г. На основе этого решения была построена модель развития астрономического мира во времени, объясняющая разбегание галактик. В этой модели исходным является сверхплотное состояние материи, существовавшее 10–20 млрд. лет назад.
Выяснение физического состояния вещества, в результате расширения которого образовалась наша Метагалактика, — одна из фундаментальных проблем современного естествознания. Формально решения уравнений дают бесконечную плотность вещества в такой первичной конденсации. Однако бесконечное значение плотности не имеет физического смысла, и поэтому обычно говорят о сингулярности — необычном состоянии, резко отличающемся от «привычных» состояний материи. Во всяком случае считается, что это было состояние чудовищной плотности, достигавшей 10 93-10 95г/см 3, что на 79–81 порядок выше плотности атомного ядра. О подобных суперплотных состояниях мы пока мало что знаем. К описанию физических явлений, которые протекают в таких условиях, современные фундаментальные физические теории неприменимы.
По-видимому, в подобной ситуации меняется смысл, который мы вкладываем в такие фундаментальные понятия, как «пространство», «время», «одновременность», «раньше», «позже» и т. п.
Вообще говоря, наука допускает экстраполяцию тех или иных теоретических представлений и на области явлений, лежащие за границами применимости данной теории. При такой экстраполяции общая теория относительности приводит к выводу, что Вселенная возникла из бесконечно малого (точечного) объема при моменте времени, равном нулю.
Проблема сингулярности составляет одну из центральных проблем современной космологии. С одной стороны, эйнштейновская ОТО с неизбежностью приводит к сингулярности. Однако, с другой стороны, состояния с бесконечной плотностью физически неосуществимы. Складывается впечатление, что появление сингулярности в ОТО является следствием того, что ОТО неприменима к состояниям с очень большой плотностью, что она Здесь выходит за границы своей применимости.
Каким образом может быть устранено возникающее противоречие? Над решением этой задачи упорно работают современные теоретики — физики и астрофизики. Возможно, удастся показать, что возникающая с точки зрения ОТО в процессе эволюции Вселенной сингулярность не является все же в рамках этой теории абсолютно неотвратимой, что при определенных условиях от нее можно избавиться. Другое направление связано с возможностью существования так называемой «фундаментальной длины», т. е. некоей минимальной протяженности, которая определяет границы применимости известной нам физики. Возможен, однако, и третий вариант: не исключено, что границы применимости ОТО определяются возникновением квантовых явлений. Согласно существующим представлениям, такой границей служит временной интервал порядка 10 -43с, протяженность порядка 1,6·10 -33см и плотность порядка 5·10 93г/см 3. В связи с этим предпринимаются попытки создания квантовой гравитационной теории и квантовой космологии. Этой теории предстоит решить целый ряд принципиальных проблем: о взаимодействии вещества и вакуума, который, судя по всему, представляет собой особую, скрытую форму существования материи, о рождении частиц из вакуума, о взаимосвязи микро- и макропроцессов. Именно это направление теоретического поиска сейчас является основным.
Читать дальше