• Горячий газ
Наблюдения на орбитальных обсерваториях («Ухуру», «Эйнштейн» и др.) показали, что гигантские эллиптические галактики и скопления галактик излучают в рентгеновском диапазоне. Источником этого излучения является горячий (~ 106–108 К) газ, образующий протяженные короны вокруг эллиптических галактик и заполняющий скопления. Масса этого газа относительно велика — например, в скоплениях она составляет ~10–20 % полной массы.
Если бы в галактиках и в скоплениях ничего, кроме звезд и газа, не было, то создаваемое ими гравитационное поле было бы недостаточным для удержания столь сильно нагретой среды. Оценки содержания скрытой массы, необходимой для удержания горячего газа в скоплениях, согласуются с динамическими, полученными по скоростям движения галактик.
• Гравитационное линзирование
Предыдущие свидетельства существования темного вещества были основаны на его гравитационном влиянии на звезды и газ, однако есть еще один вид материи, на который влияет гравитационное поле — электромагнитное излучение, свет. Именно этот эффект — отклонение лучей света фоновых звезд Солнцем — послужил, кстати, одним из первых тестов общей теории относительности.
Итак, если между далеким источником (например, галактикой) и нами есть какой-то массивный объект (например, скопление галактик), то изображение этого источника исказится весьма специфическим образом. Наиболее эффектные, известные в настоящее время, гравитационные линзы — это, конечно, богатые скопления галактик, на периферии которых часто наблюдаются дуги или арки, являющиеся усиленными и искаженными изображениями фоновых галактик (рис. 34). Расположение и форма этих дуг зависят от распределения массы в скоплении и поэтому их можно использовать для реконструкции его потенциала. Детальное моделирование ряда таких скоплений подтвердило оценки их масс, найденные динамическим методом и по горячему газу — массы скоплений галактик многократно превышают суммарную массу входящих в них галактик.

Рис. 34. Изображение центральной части скопления галактик Abell 2218. Дугообразные детали на снимке — изображения далеких галактик, искаженные гравитационным полем скопления. (Снимок космического телескопа «Хаббл»)
Используется и слабое гравитационное линзирование, влияние которого выделяется при статистическом анализе множества изображений. Например, при отсутствии близкой концентрации массы ориентация далеких, фоновых галактик должна быть хаотической. Если же такая масса присутствует, она приведет к изменению видимых вытянутостей галактик и к появлению некоторой упорядоченности в их ориентациях. С использованием такого подхода удалось даже построить крупномасштабные карты распределения скрытой массы. Например, на рис. 35 показана первая такая трехмерная карта. На рисунке видно, что темная материя, в среднем, хорошо отслеживает распределение видимого вещества, хотя имеются и определенные отличия. В целом слабое гравитационное линзирование дает результаты о скрытой массе, согласующиеся с получаемыми другими методами.

Рис. 35. Наверху: спроецированное распределение галактик в области проекта COSMOS (1600 кв. градусов) (слева) и распределение скрытой массы, построенное методом слабого гравитационного линзирования (справа). Внизу: трехмерное распределение темной материи в той же области. На нижнем рисунке красное смещение увеличивается слева направо от z = 0 до z ~ 1. (По данным Масси и др. 2007)
Есть и другие наблюдательные свидетельства присутствия во Вселенной значительного количества темной материи, однако существуют и теоретические аргументы. По-видимому, первым из них явилось высказанное в 1973 году Острайкером и Пиблсом соображение, что без массивных темных гало диски спиральных галактик должны быть неустойчивыми. Однако самым важным является то, что без скрытой массы галактики вообще не смогли бы образоваться! По современным представлениям галактики формируются и растут за счет гравитационной неустойчивости из исходных возмущений плотности в ранней Вселенной. Как мы убедились в параграфе о реликтовом излучении, через 400 000 лет после начала космологического расширения эти флуктуации плотности были еще очень малы — всего лишь ~10 -5. Оказывается, что если бы во Вселенной было только обычное (так называемое барионное) [23] Барионы — общее название тяжелых элементарных частиц с полуцелым спином, самыми известными из которых являются протоны и нейтроны.
вещество, из которого состоят звезды и галактики, то эти неоднородности просто не успели бы усилиться до такой степени, чтобы создать окружающее нас разнообразие структур! Решением этого парадокса является учет наличия во Вселенной значительного количества небарионной скрытой массы. Фотоны реликтового излучения взаимодействуют лишь с барионным веществом, и поэтому анизотропия фонового излучения несет информацию только о флуктуациях обычной материи. Небарионное вещество на момент рекомбинации могло быть скучено уже гораздо сильнее, подготовив «затравки» для роста будущих галактик и их скоплений.
Читать дальше
Конец ознакомительного отрывка
Купить книгу