В 1939 году Хорее Бэбкок опубликовал самую подробную к тому времени кривую вращения галактики туманность Андромеды (зависимость скорости вращения, измеряемой по доплеровскому смещению спектральных линий, от расстояния от центра). Кривая вращения оказалась необычной — на большом расстоянии от центра скорость вращения не спадала, как ожидалось, а оставалась высокой. (Почему это было необычно, я объясню чуть дальше.) Годом позже Ян Оорт обсудил кривую вращения галактики NGC 3115 и также заключил, что наблюдаемая скорость вращения внешних областей галактики не соответствует ожидаемой для случая, если вся масса галактики заключена в ее звездах. И Бэбкок, и Оорт отметили важность исследования кривых вращения внешних областей галактик, однако их результаты не привлекли в то время внимания, как, впрочем, и результаты Цвикки и Смита, что, по крайней мере отчасти, вероятно, было связано с начавшейся Второй мировой войной [22] Годы войны оставили почти незамеченными еще несколько замечательных, сильно опередивших свое время, работ. Например, в 1941 году шведский астроном Эрик Хольмберг впервые смоделировал процесс взаимодействия двух галактик, на два-три десятилетия предвосхитив некоторые результаты, полученные позднее с помощью компьютеров. В своей работе Хольмберг воспользовался тем, что освещенность, как и гравитация, уменьшается обратно пропорционально квадрату расстояния. Это позволило Хольмбергу представить каждую из двух галактик в виде круга из 37 лампочек, а неоднородности гравитационного поля, в соответствии с которыми перемещались звезды (лампочки), измерялись им с помощью фотоэлемента! Осталась незамеченной и работа американца Карла Сейферта, описавшего в 1943 году несколько галактик с сильными эмиссионными линиями в ядрах. Сейчас такие объекты называют галактиками Сейферта и они являются представителями интенсивно изучаемого класса галактик с активными ядрами, к которому принадлежат, кстати, и знаменитые квазары.
.
Прошло два десятка лет, и темная материя снова всплыла, но уже в совсем другом контексте. В 1959 году Кан и Вольтьер предположили, что сближение нашей Галактики и туманности Андромеды вызвано силами взаимного притяжения. Это дает возможность оценить их суммарную массу, которая оказалась в несколько раз большей, чем сумма индивидуальных масс. Кан и Вольтьер заключили, что эта недостающая материя существует в виде гало из горячего газа, окружающих галактики.
В 1960–1970-е годы появились технические возможности для массового измерения протяженных кривых вращения галактик в оптике и по наблюдениям в линии HI (λ = 21 см). (Радиолиния атомарного водорода на 21 см является одной из самых популярных в астрономии. Излучение в этой линии обусловлено сверхтонким расщеплением основного уровня энергии атома водорода на два близких подуровня. По интенсивности этой линии можно оценивать распределение и массу нейтрального водорода в галактиках, а по ее профилю и по величине доплеровского смещения можно изучать их вращение.) Кроме того, начали появляться и теоретические аргументы в пользу существования массивных невидимых гало, окружающих галактики. С этого времени скрытая масса становится все более популярна и вездесуща — без ее привлечения сейчас не объяснить ни свойств отдельных галактик, ни их систем, ни крупномасштабную структуру Вселенной в целом. Далее я попытаюсь коротко суммировать основные астрономические свидетельства существования темной материи на разных масштабах.
• Кривые вращения галактик
Плоские кривые вращения — это самый известный и наиболее часто упоминаемый довод в пользу окружающих галактики массивных невидимых гало. Смысл этого довода очень прост. Рассмотрим какой-либо сферический объект (например, Солнце) и расположенный за его пределами небольшой спутник (например, планету), обращающийся вокруг него по круговой орбите под действием гравитации.
Тогда скорость этого спутника выражается хорошо известной со школы формулой: ν = √GM/r, где G — гравитационная постоянная, M — масса центрального объекта, а r — расстояние между центральным телом и спутником. Отсюда видно, что с удалением спутника его скорость должна уменьшаться как 1/ √r . Например, мы знаем, что Земля движется вокруг Солнца по почти круговой орбите со скоростью 30 км/с. Юпитер находится от Солнца примерно в 5.2 раза дальше и, следовательно, скорость его движения по орбите в √5.2 = 2.3 раза меньше, чем у Земли, и равна 30/2.3 = 13 км/с. Чем дальше планета от Солнца — тем медленнее она движется.
Читать дальше
Конец ознакомительного отрывка
Купить книгу