R w ≈ R b(p 0/p а) 1/2, или R w ≈ R b(V/C a) √γ,
где p 0 — давление на лобовой поверхности затупленного тела (p 0 ≈ ρ аV 2, ρ a — плотность воздуха, γ — показатель адиабаты), C а — скорость звука в холодном воздухе. При V = 15 км/с, C а= 0,3 км/с получаем R w/R b ≈ 60. Таким образом, для тела диаметром 0,2 км диаметр следа будет достигать R w ≈ 12 км. В действительности, за время пролета тела сквозь слой толщиной порядка характеристической высоты атмосферы H след не успевает расшириться до своего предельного размера.
След является разреженным каналом, через который некоторая часть энергии и массы может покидать плотные слои атмосферы, на его размер влияет и разрушение тела. Поэтому более полную картину можно получить только путем численного расчета.
На рис. 8.2 приведены результаты расчета по программе SOVA [Shuvalov, 1999] пролета ледяного тела (ρ b= 1 г/см 3) сквозь атмосферу при начальном диаметре 200 м и начальной скорости 50 км/с, т. е. при массе 4 10 6т и начальной энергии, эквивалентной 300 Мт ТНТ. Видно, что к моменту времени, когда струя фрагментов подлетела к Земле, диаметр струи превышал 1 км. Через 1 с после удара характерный поперечный диаметр горячей области и области повышенного давления составил уже около 10 км.
При меньших начальных размерах тела струя фрагментов и воздуха вообще не достигает Земли. Именно это имело место в случае Тунгусского падения в 1908 г., когда метеороид имел размер не более 100 м. Наоборот, при падении крупного тела практически вся масса тела почти без торможения и абляционных потерь достигает поверхности Земли.
Рис. 8.2. Распределение плотности при пролете сквозь атмосферу ледяного тела с начальными диаметром 200 м и скоростью 50 км/с
8.1.2. Ударная волна. Оценка параметров ударной волны. После удара космического тела о поверхность Земли его кинетическая энергия превращается в тепловую и кинетическую энергии вещества грунта за фронтом ударной волны, распространяющейся в грунте от точки удара, и в энергию парового факела, выбрасываемого в атмосферу. Этот факел взаимодействует с атмосферой Земли и выделяет часть своей энергии в воздухе, также генерируя в нем ударную волну [Мелош, 1994; Ahrens and O’Keefe, 1987; O’Keefe and Ahrens, 1982a; Roddy et al., 1987].
Если ударяющее тело имеет низкую плотность по сравнению с плотностью грунта, а влиянием следа и неоднородности атмосферы можно пренебречь, то простейшую оценку параметров ударной волны в воздухе можно сделать, предположив, что вся энергия тела превращается вблизи точки удара в энергию полусферической волны. В свою очередь, для определения параметров ударной волны такого взрыва можно использовать или эмпирические данные, например представленные в виде аналитической формулы Садовского [Садовский, 2004], или результаты одномерных численных расчетов [Brode, 1955; Охоцимский и др., 1957]. Естественно, необходимо учитывать, что при прохождении космическим телом атмосферы часть его энергии выделяется в воздухе и энергия «приземного» взрыва, соответственно, меньше начальной.
Проблема определения опасностей, связанных с ударами астероидов и комет, является многофакторной, так как результат зависит от начальной скорости, массы, плотности, состава, формы, структуры и прочности тела, угла наклона его траектории, плотности и состава грунта в месте удара и т. д. Численные расчеты двумерных, а тем более трехмерных физико-математических задач о прохождении разрушающегося тела сквозь атмосферу и ударе о Землю являются весьма трудоемкими. Поэтому естественными являются попытки построения приближенных моделей для оценки результатов удара. Одной из таких моделей, доведенных до удобной в использовании программы, является программа, созданная в Аризонском университете (модель СММ) [Collins et al., 2005] и размещенная на сайте этого университета (www.lpl.arizona.edu/ImpactEffects). В силу желания получить простой и удобный в использовании инструмент для оценок авторы прибегли к ряду упрощений, которые подчас применимы не ко всем ситуациям, возникающим при ударах. При расчете параметров ударной волны были использованы данные, полученные при наземных и приземных ядерных взрывах [Glasstone and Dolan, 1977], и принцип энергетического подобия. В действительности область энерговыделения при входе метеороида является не точечным и не линейным источником, что видно из результатов расчета даже вертикального удара (рис. 8.2). И тем более сложной является картина взаимодействия ударной волны с поверхностью при косом ударе. Расчет прохождения тела сквозь атмосферу в программе СММ для рассматриваемых здесь достаточно больших тел (размером в десятки, сотни и более метров) проводится по модели растекающегося «блина» [Chyba et al., 1993] с фактором расширения f p= 7. Считается, что при достижении этого расширения оставшаяся энергия выделяется в воздухе. Если же эта степень расширения не достигается вплоть до поверхности Земли, то предполагается, что остатки ударяют о поверхность, приводя к образованию кратера, выбросу вещества, сейсмическому эффекту и формированию ударной волны в воздухе.
Читать дальше
Конец ознакомительного отрывка
Купить книгу