Далее, как показал Ричард Чаплин, образование складок при сжатии волокнистых материалов требует больших энергетических затрат, чем работа разрушения при растяжении. Следовательно, для развития складок необходимо подводить к ним упругую энергию, и их поведение должно быть чем-то похоже на поведение трещин Гриффитса. Однако здесь имеется и несколько важных различий.
Мы уже говорили, что в материалах, которые мы сейчас рассматриваем, складки изогнутых волокон могут появляться как под углом 45°, так и под углом 90° к направлению действия нагрузки (они могут быть и под другими углами между 45° и 90°). Поведение складки под углом 45° похоже на поведение трещины сдвига, при подходящих условиях она распространяется через весь образец подобно трещине Гриффитса. Однако складка под углом 90° короче наклонной, и поэтому она потребляет меньше энергии при равной глубине, отсчитываемой по нормали от образца.
По этой причине складки под углом 90° в целом более вероятны. Однако, хотя такая складка начинает распространяться легче, она и скорее прекращает свой рост, продвинувшись на сравнительно небольшую длину. Происходит это потому, что при увеличении длины складки две ее стороны прижимаются друг к другу, в результате чего высвобождение упругой энергии прекращается. Поэтому полное разрушение образца, по крайней мере немедленное, становится маловероятным. В этих условиях может возникнуть целая цепочка коротких складок, протянувшаяся вдоль сжатой поверхности балки. Их можно иногда увидеть на поверхности деревянного лука или весла (рис. 141).

Рис. 141. Складки на сжатой стороне круглого изогнутого бревна.
Инженеры обычно уповают на эффективность двутаврового или коробчатого сечения балок, но иногда это не что иное, как заблуждение. По ряду причин [102] Когда трещина или складка сжатия с прямолинейным фронтом (как пропил) углубляется в круглое сечение, ее поверхность может возрастать быстрее, чем величина высвобождаемой упругой энергии за ее фронтом, нарушая тем самым условие Гриффитса.
в балках круглого сечения (как древесный ствол) высвобождение упругой энергии, необходимое для распространения трещин или складок сжатия, оказывается менее благоприятным для развития процессов разрушения. Этим, быть может, определяется рациональность круглого сечения большинства деревянных луков, и, несомненно, с этим связана округлая форма поперечного сечения костей животных.
Пока на материал действуют только сжимающие нагрузки, развитию складок препятствует довольно много причин. Отчасти поэтому дерево обычно является таким надежным строительным материалом. Однако, если нагрузка реверсируется, ситуация может стать чрезвычайно опасной. Дело в том, что система согнутых волокон, которая образует складку, имеет практически нулевую прочность на растяжение и в условиях растяжения складки ведут себя подобно трещинам. Это особенно опасно потому, что при растяжении теперь уже ничто не препятствует высвобождению упругой энергии, так как две стороны "трещины" теперь могут свободно разойтись.
Один из безотказных способов сломать крыло деревянного планера в полете - это совершить грубую посадку при предыдущем вылете. Если при посадке машину сильно ударить о землю, то крыло резко изогнется вниз. Это может привести к образованию складок сжатия в полке лонжерона, нагруженной растяжением в полете. Невероятно, чтобы возникшие складки были обнаружены при обычном осмотре, так что в следующем полете лонжерон сломается именно в этом месте, после чего, конечно, отвалится и все крыло.
Леонард Эйлер и выпучивание тонких стержней и пластин
Все, о чем мы говорили до сих пор, применимо лишь к относительно коротким и толстым стержням и другим сжатым элементам. Мы видели, что при сжатии они обыкновенно разрушаются вследствие сдвига или образования локальных складок. Однако огромное количество сжатых конструкций содержит длинные и тонкие элементы, которые выходят из строя совершенно по-другому. Длинный стержень, тонкий лист металла или страница этой книги выпучиваются при сжатии, теряя способность нести нагрузку. В этом легко убедиться с помощью простейшего эксперимента: возьмите лист бумаги и попытайтесь сжать его в продольном направлении. Такой вид потери несущей способности (с ним связаны важные технические и экономические последствия) называется потерей устойчивости. Впервые он был изучен Леонардом Эйлером (1707-1783), и потому нередко говорят об устойчивости (или неустойчивости) по Эйлеру.
Читать дальше
Конец ознакомительного отрывка
Купить книгу