Smart Reading - Ключевые идеи книги - Математические способности. Как преуспеть в математике и точных науках (даже если алгебра наводила на вас ужас). Барбара Оукли

Здесь есть возможность читать онлайн «Smart Reading - Ключевые идеи книги - Математические способности. Как преуспеть в математике и точных науках (даже если алгебра наводила на вас ужас). Барбара Оукли» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: psy_personal, Самосовершенствование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Ключевые идеи книги: Математические способности. Как преуспеть в математике и точных науках (даже если алгебра наводила на вас ужас). Барбара Оукли: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Ключевые идеи книги: Математические способности. Как преуспеть в математике и точных науках (даже если алгебра наводила на вас ужас). Барбара Оукли»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Этот текст – сокращенная версия книги Барбары Оукли «Математические способности. Как преуспеть в математике и точных науках (даже если алгебра наводила на вас ужас)». Только самые ценные мысли, идеи, кейсы, примеры. О книге
В книге «Математические способности. Как преуспеть в математике и точных науках» доктор Барбара Оакли раскрывает секреты эффективного обучения, с которыми зачастую не знакомы даже старательные отличники. Математика требует творческого мышления. Большинство людей думают, что есть только один способ решить задачу, а на самом деле решений множество. Так, например, существует около 300 известных доказательств теоремы Пифагора. Чтобы увидеть их, нужен аналитический подход. Стратегии обучения из этой книги применимы не только к математике и естественным наукам, но к любому объекту изучения. Человек обладает всем необходимым, чтобы преуспеть в тех областях, в которых он на первый взгляд слаб. Способность к математике – естественное следствие эволюции, но ее высвобождения требуются усилия.
Зачем читать
• Узнать о парадоксах процесса обучения, которые упрощают поиск правильного решения.
• Ознакомиться с простой и гениальной инструкцией по применению человеческого мозга.
• Повысить эффективность в освоении новой информации даже в тех областях, которые раньше не давались.
Об авторе
Барбара Оакли – американский профессор инжиниринга Оклендского Университета. В широких кругах известна как «Индиана Джонс в юбке». В армии США стала специалистом по славянским языкам, работала переводчиком с русского на советском траулере в Беринговом море, преподавала в Китае, сделала военную карьеру в США, пройдя путь от рядового до капитана, работала радистом на Южном Полюсе, а к сорока годам вернулась к учебе, получив докторскую степень. Ее онлайн-курс прошли около 2 миллионов студентов.

Ключевые идеи книги: Математические способности. Как преуспеть в математике и точных науках (даже если алгебра наводила на вас ужас). Барбара Оукли — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Ключевые идеи книги: Математические способности. Как преуспеть в математике и точных науках (даже если алгебра наводила на вас ужас). Барбара Оукли», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Однако здесь есть и свои подводные камни: в сфокусированном режиме есть вероятность слишком зациклиться – сконцентрироваться на ошибочных мыслях, в то время как решение проблемы может ждать вас совсем в другой зоне мозга. Это так называемый эффект Лачинса(или Einstellung-эффект, эффект установки), когда идея, которая уже есть у вас в голове (проторенная дорожка предыдущих решений) или простая первая догадка мешает вам найти другое, правильное решение.

Рассеянный режим, как оказалось, также чрезвычайно важен для освоения новой информации: он ответственен за «озарения», а также позволяет нам взглянуть на проблему в целом. Рассеянный режим включается, когда вы расслабляетесь и отпускаете мысли в свободное плавание. Он не связан с конкретным участком головного мозга, он именно «рассеян» по всему мозгу. Таким образом, расслабление позволяет мыслям свободно бродить и неожиданным образом связывать те кусочки мозаики, которые были наработаны в сфокусированном режиме, – так и случается озарение.

Этот режим особенно важен для освоения чего-то нового, ведь в этом случае у вас нет образца или предыдущего опыта решения, который поможет вам прийти к заветной цели. Вам нужен широкий обзор, чтобы найти новый подход. Рецепт в этом случае прост – отключить сфокусированный режим и перейти в рассеянный.

Этот же прием отлично работает, когда вы застряли на пути к решению (эффект Лачинса) – просто переключитесь [2] Естественное переключение происходит, если вы полностью отвлечетесь от проблемы, после чего пройдет какое-то время: можно сходить на прогулку, в спортзал или подремать. Но обычно переход в рассеянный режим занимает несколько часов. Если этого времени у вас нет, вот секреты «переключения» от эксперта в области креатива Говарда Грубера: эффект трех «Д»: душ, дрема и дорога (как пешком, так и на машине или автобусе) – они быстро переведут вас в нужный режим. ! Запуск рассеянного режима помогает нам усваивать информацию на более глубоком, креативном уровне. Работа небольшими порциями, чередующаяся переменками или работой над другими темами, – самый эффективный и легкий способ поиска решения [3] Еще один трюк для того, чтобы выйти из тупика, – просто моргнуть! Как показывают последние исследования, моргание – мощный инструмент для переоценки ситуации. Оно позволяет нам взять микропаузу и тем самым освежить и обновить наш взгляд на проблему. .

Таким образом, для эффективного освоения математики и других точных наук вам понадобятся оба режима: один обрабатывает получаемую информацию и потом отсылает результаты в другой. Такое «перебрасывание» информации между режимами оказывается необходимым для решения всех проблем (за исключением самых типичных и простых). Это похоже на возведение стены: работа в сфокусированном режиме – это выпекание кирпичиков, а в рассеянном – склеивание их воедино цементным раствором.

1.2. Две памяти

Эффективное освоение материала невозможно без эффективного запоминания, а потому остановимся на еще одной составляющей мыслительного процесса – памяти. Мы рассмотрим две (применительно к нашим целям): оперативную и долговременную.

Оперативная памятьработает с тем, что вы в настоящий момент сознательно осваиваете в мозге. Доказано, что она может удерживать примерно 4 порции информации одновременно. Это своего рода жонглер: только четыре предмета остаются в воздухе (в памяти), подталкиваемые нашей энергией (мыслительным процессом).

При изучении математики оперативная память незаменима: она как ваша личная классная доска, место, где вы можете набросать идеи и рассматриваемые концепции. Как удерживать идеи в оперативной памяти? Только путем постоянного повторения и концентрации внимания.

Долговременную же памятьможно сравнить с большим хранилищем. Однажды попав туда, предметы (идеи, концепции) остаются там навсегда. Хранилище огромно, коробок миллиарды, и потерять там нужную очень легко. Исследования показывают, что раз положив «коробку» в долгосрочную память, вы должны «вернуться» к ней несколько раз, чтобы позже найти к ней «дорогу» (то есть вспомнить в нужный момент).

Долговременная памятьчрезвычайно важна для изучения математики – именно там мы храним все фундаментальные концепции и образцы решений. Чтобы надежно поместить идею в долговременную память, используйте технику «Разнесенных во времени повторений»: вы повторяете то, что хотите надолго запомнить, но эти повторения распределяете во времени (а не совершаете подряд [4] День между повторениями дает потрясающий эффект. Эксперимент показал, что повторение материала 20 раз за один вечер проигрывает по всем статьям эффекту от стольких же повторений, но в течение нескольких дней и недель. Иными словами, дайте мозгу время сформировать необходимые связи, и он будет творить для вас чудеса. ).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Ключевые идеи книги: Математические способности. Как преуспеть в математике и точных науках (даже если алгебра наводила на вас ужас). Барбара Оукли»

Представляем Вашему вниманию похожие книги на «Ключевые идеи книги: Математические способности. Как преуспеть в математике и точных науках (даже если алгебра наводила на вас ужас). Барбара Оукли» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Ключевые идеи книги: Математические способности. Как преуспеть в математике и точных науках (даже если алгебра наводила на вас ужас). Барбара Оукли»

Обсуждение, отзывы о книге «Ключевые идеи книги: Математические способности. Как преуспеть в математике и точных науках (даже если алгебра наводила на вас ужас). Барбара Оукли» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x