Отсюда перед нами возникает первый вопрос: «я подсознательное» нисколько не является низшим по отношению к «я сознательному», оно не является чисто автоматическим, оно способно здраво судить, оно имеет чувство меры и чувствительность, оно умеет выбирать и догадываться. Да что говорить, оно умеет догадываться лучше, чем «я сознательное», так как преуспевает там, где последнее потерпело неудачу. Короче, не стоят ли мои бессознательные процессы выше чем моё сознание?
Вы понимаете важность моего вопроса. Э. Бутру показал в докладе, сделанном здесь же два месяца назад, как этот вопрос возникает при совершенно других обстоятельствах и какие следствия вытекают из утвердительного ответа. Не вытекает ли такой утвердительный ответ из фактов, которые я только что вам изложил? Я утверждаю, что не могу с этим согласиться. Итак, исследуем ещё раз факты и посмотрим, не содержат ли они другого объяснения.
Несомненно, что комбинации, приходящие на ум в виде внезапного озарения после достаточно длительной бессознательной работы, обычно полезны и глубоки, как будто они прошли уже первый отбор. Значит ли это, что подсознание образовало только эти комбинации, интуитивно догадываясь, что лишь они полезны, или оно образовало и многие другие, которые были лишены интереса и остались неосознанными?
При этой второй точке зрения все комбинации формируются механизмом подсознания, но в поле зрения сознания попадают лишь представляющие интерес. Но и это ещё очень непонятно. Каковы причины того, что среди тысяч результатов деятельности нашего подсознания есть лишь некоторые, которые призваны пересечь его порог, в то время как все прочие остаются по ту сторону? Не просто ли случай даёт им эту привилегию? Конечно, нет. К примеру, среди всех ощущений, действующих на наши органы чувств, только самые интенсивные обращают на себя наше внимание, по крайней мере, если это внимание не обращено на них по другим причинам. В более общем случае среди бессознательных идей привилегированными, т. е. способными стать сознательными, являются те, которые прямо или косвенно наиболее глубоко воздействуют на наши чувства.
Может вызвать удивление обращение к чувствам, когда речь идёт о математических доказательствах, которые, казалось бы, связаны только с умом. Но это означало бы, что мы забываем о чувстве математической красоты, гармонии чисел и форм, геометрической выразительности. Это настоящее эстетическое чувство, знакомое всем настоящим математикам. Воистину, здесь налицо чувство!
Но каковы математические характеристики, которым мы приписываем свойства красоты и изящества и которые способны возбудить в нас своего рода эстетическое чувство? Это те элементы, которые гармонически расположены таким образом, что ум без усилия может их охватывать целиком, угадывая детали. Эта гармония служит одновременно удовлетворением наших эстетических чувств и помощью для ума, она его поддерживает и ею он руководствуется. Эта гармония даёт нам возможность предчувствовать математический закон. Итак, как это было сказано выше, единственными фактами, способными обратить на себя наше внимание и быть полезными, являются те, которые подводят нас к познанию математического закона. Таким образом, мы приходим к следующему выводу: полезные комбинации — это в точности наиболее красивые, т. е. те, которые больше всего воздействуют на это специальное чувство математической красоты, известное всем математикам и недоступное профанам до такой степени, что они часто склонны смеяться над ним.
Что же, таким образом, происходит? Среди многочисленных комбинаций, образованных нашим подсознанием, большинство безынтересно и бесполезно, но потому они и не способны подействовать на наше эстетическое чувство; они никогда не будут нами осознаны; только некоторые являются гармоничными и потому одновременно красивыми и полезными; они способны возбудить нашу специальную геометрическую интуицию, которая привлечёт к ним наше внимание и таким образом даст им возможность стать осознанными.
Это только гипотеза, но есть наблюдение, которое её подтверждает: внезапное озарение, происходящее в уме математика, почти никогда его не обманывает, но иногда случается, что оно не выдерживает проверки, и тем не менее почти всегда замечают, что если бы эта ложная идея оказалась верной, то она удовлетворила бы наше естественное чувство математического изящества.
Таким образом, это специальное эстетическое чувство играет роль решета, и этим объясняется, почему тот, кто лишён его, никогда не станет настоящим изобретателем.
Читать дальше