Жак Адамар - Исследование психологии процесса изобретения в области математики

Здесь есть возможность читать онлайн «Жак Адамар - Исследование психологии процесса изобретения в области математики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1970, Издательство: Советское радио, Жанр: Психология, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Исследование психологии процесса изобретения в области математики
  • Автор:
  • Издательство:
    Советское радио
  • Жанр:
  • Год:
    1970
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг книги:
    3 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Исследование психологии процесса изобретения в области математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Исследование психологии процесса изобретения в области математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В настоящее время в связи с задачами эвристического программирования возрос интерес к анализу творческого мышления человека. В книге, автор которой — один из видных математиков нашего столетия, подробно рассмотрен процесс творчества, преимущественно математиков. Особое внимание уделено роли подсознания в процессе творчества. Книга представляет интерес для математиков, кибернетиков, психологов и широкого круга читателей.

Исследование психологии процесса изобретения в области математики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Исследование психологии процесса изобретения в области математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если математик должен воспользоваться некоторым правилом, естественно, он сначала его доказывает и в момент, когда это доказательство свежо в его памяти, он прекрасно понимает его смысл и пределы применения и поэтому не рискует его исказить. Но затем, доверяя своей памяти, он применяет его механически, и если память его подведёт, то правило может быть применено неверно. В качестве простого и почти вульгарного примера можно привести тот факт, что мы часто ошибаемся в вычислении, так как забыли таблицу умножения.

С этой точки зрения математические способности должны были бы сводиться к очень надёжной памяти или к безупречному вниманию. Это качество подобно способности игрока в вист запоминать сброшенные карты; или — на более высоком уровне — способности шахматиста, который должен рассмотреть большое число комбинаций и все их держать в памяти. Каждый хороший математик должен был бы быть одновременно хорошим шахматистом и обратно; точно так же он должен бы быть хорошим вычислителем. Действительно, так иногда случается и, например, Гаусс был одновременно гениальным геометром и рано проявившим себя очень хорошим вычислителем.

Но есть исключения, хотя я, пожалуй, не прав, называя это исключениями, так как иначе исключения оказались бы более многочисленными, чем правила. Напротив, это Гаусс был исключением. Что касается меня, то я вынужден признать свою совершенную неспособность выполнить сложение без ошибки. Я был бы также очень плохим шахматистом; я мог бы хорошо рассчитать, что, совершив такой-то ход, я подвергся бы такой-то опасности; я рассмотрел бы много других ходов, которые я отбросил бы по другим причинам, и кончил бы тем, что совершил бы рассмотренный ход, забыв между делом об опасности, которую я раньше предвидел.

Одним словом, у меня неплохая память, но она недостаточна, чтобы сделать меня хорошим шахматистом. Почему же она меня не подводит в трудном математическом рассуждении? Это, очевидно, потому, что она руководствуется общей линией рассуждения. Математическое рассуждение не есть простая совокупность силлогизмов; это силлогизмы, помещённые в определённом порядке, и порядок, в котором эти элементы расположены, гораздо более важен, чем сами элементы. Если я чувствую этот порядок, так что вижу всё рассуждение в целом, то мне не страшно забыть один из элементов: каждый из них встанет на место, которое ему приготовлено, причём без всякого усилия со стороны памяти. Когда я изучаю некоторое утверждение, мне кажется, что я мог бы сам его открыть, или, вернее, если это иллюзия и я недостаточно силён, чтобы открыть его, я переоткрываю его во время изучения.

Отсюда можно сделать вывод, что это интуитивное чувство математического порядка, которое позволяет нам угадать гармонию и скрытые соотношения, доступно не всем людям. Одни не способны к этому деликатному и трудному для определения чувству и не обладают памятью и вниманием сверх обычных; и они совершенно неспособны понимать серьёзную математику; таковых большинство. Другие обладают этим чувством в малой степени, но они имеют хорошую память и способны на глубокое внимание. Они запомнят наизусть детали одну за другой, они смогут понять математику и иногда её применять, но они неспособны творить. Наконец, третьи в большей или меньшей степени обладают той специальной интуицией, о которой я говорил, и они могут не только понимать математику, но и творить в ней и пытаться делать открытия с большим или меньшим успехом в зависимости от степени развития этой интуиции, несмотря на то, что их память не представляет собой ничего особенного.

Что же такое в действительности изобретение в математике? Оно состоит не в том, чтобы создавать новые комбинации из уже известных математических фактов. Это мог бы делать любой, но таких комбинаций было бы конечное число, и абсолютное большинство из них не представляло бы никакого интереса. Творить это означает не создавать бесполезных комбинаций, а создавать полезные, которых ничтожное меньшинство. Творить — это уметь распознавать, уметь выбирать.

Как делать этот выбор, я объяснял в другом месте: математические факты, которые заслуживают того, чтобы быть изученными, — это такие, которые по своей аналогии с другими фактами могут нас подвести к познанию математического закона, подобно тому, как экспериментальные факты подводят нас к познанию физического закона. Это такие факты, которые открывают нам связь между другими законами, известными уже давно, но ошибочно считавшимися не связанными друг с другом.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Исследование психологии процесса изобретения в области математики»

Представляем Вашему вниманию похожие книги на «Исследование психологии процесса изобретения в области математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Исследование психологии процесса изобретения в области математики»

Обсуждение, отзывы о книге «Исследование психологии процесса изобретения в области математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x