Дивергентные сети с одним входом.В некоторых нервных сетях имеются скопления или слои нейронов, в которых один нейрон образует выходные связи с очень большим числом других клеток (в таких сетях дивергенция доведена до крайних пределов). Изучение сетей такого типа начато лишь недавно, и единственные места, где они встречаются (насколько нам сейчас известно), — это некоторые части среднего мозга и ствола мозга. Преимущества подобной системы в том, что она может оказывать влияние на множество нейронов сразу и иногда осуществлять связь со всеми иерархическими уровнями, нередко выходя за пределы специфических сенсорных, двигательных и других функциональных альянсов.
Поскольку сфера воздействия таких сетей не ограничена какой-либо системой с определенными функциями, дивергирующие пути этих сетей иногда называют неспецифическими . Однако ввиду того, что такие сети могут влиять на самые различные уровни и функции, они играют большую роль в интеграции многих видов деятельности нервной системы (см. гл. 4). Иными словами, такие системы выступают в роли организаторов и режиссеров массовых мероприятии, руководящих согласованными действиями больших групп людей. Кроме того, медиаторы, используемые в дивергентных системах с одним входом, — это медиаторы с «условным» действием: их эффект зависит от условии, в которых он осуществляется. Подобные воздействия весьма важны и для интегративных механизмов (лат. integratio — восстановление, восполнение, от integer — целый). Однако дивергентные сети такого типа составляют лишь небольшую часть всех нервных сетей.
Изменчивость генетически детерминированных типов сетей
Хотя общая картина связей специфических функциональных сетей удивительно сходна у всех, представителей одного вида, опыт каждой отдельной особи может оказывать дальнейшее влияние на межнейронные связи, вызывая в них индивидуальные изменения и корректируя их функцию.
Представим себе, например, что в мозгу большинства крыс каждый нейрон 3-го уровня в зрительной системе соединен примерно с 50 клетками-мишенями 4-го уровня — сравнительно небольшая дивергенция в системе, характеризующейся в остальном четкой иерархией. Теперь посмотрим, что произойдет, если крыса вырастет в полной темноте? Дефицит входной информации приведет к перестройке зрительной иерархии, так что каждый нейрон 3-го уровня будет контактировать только с 5 или 10 нейронами 4-го уровня вместо обычных 50. Однако, если мы рассмотрим нейроны 4-го уровня в микроскоп, мы убедимся, что у них нет недостатка во входных синапсах. Хотя зрительные нейроны 3-го уровня из-за малого числа связей передают информацию на 4-й уровень в ограниченном объеме, ее дефицит восполняется за счет других работающих сенсорных систем. У нашей крысы в доступном синаптическом пространстве 4-го уровня происходит процесс расширенной переработки слуховой и обонятельной информации.
Рассмотрим другой случай, где тот же эффект проявляется не столь резко. По некоторым данным, интенсивность межнейронной передачи сигналов может влиять на степень развития синаптических контактов между уровнями. Ряд ученых придерживается мнения, что некоторые формы памяти обусловлены изменениями в эффективности таких контактов. Эти изменения могут быть связаны как с микроструктурой (увеличение или уменьшение числа синапсов между клеткой А и клеткой Б), так и с действием медиаторов, участвующих в передаче сигналов (изменение количеств медиатора, синтезируемых и высвобождаемых одной клеткой, или степени реактивности другой клетки) (см. выше рис. 32). Эта тонкая регулировка локальных синаптических функций очень важна при некоторых заболеваниях мозга, о природе которых нам мало что известно (см. гл. 9). Малейшие изменения, происходящие на уровне синаптической активности, могли бы действительно вызвать аномалии поведения, но изменения эти настолько малы, что трудно установить, какова их роль на самом деле.
Нервные клетки не уникальны в своей способности к функциональным изменениям. Во многих других тканях клетки тоже могут изменяться, приспосабливаясь к нагрузке. Если мы возьмем небольшую пробу ткани из четырехглавой мышцы бедра у начинающего тяжелоатлета, а затем у него же после нескольких месяцев усиленной тренировки, то увидим, что каждое мышечное волокно содержит теперь сократимые фибриллы несколько большего размера и число этих фибрилл увеличилось. Слущивающиеся старые клетки вашей кожи и те, что выстилают желудочно-кишечный тракт, ежедневно заменяются новыми; эти клетки, однако, обладают способностью, которой нет у нейронов — они могут делиться. Нейроны генетически запрограммированы на синтез специфических молекул, с помощью которых работают синапсы, а также на образование весьма специфических связей, но не способны к делению. Представьте, что было бы, если бы нервные клетки стали делиться после образования синаптических связей. Как смогла бы при этом клетка распределить свои входные и выходные сигналы, чтобы сохранить прежние связи?
Читать дальше