
Рис. 28. Внутреннее строение типичного нейрона. Микротрубочки обеспечивают структурную жесткость, а также транспортировку материалов, синтезируемых в теле клетки и предназначенных для использования в окончании аксона (внизу). В этом окончании находятся синаптические пузырьки, содержащие медиатор, а также пузырьки, выполняющие иные функции. На поверхности постсинаптического дендрита показаны предполагаемые места рецепторов для медиатора (см. также рис. 29).
Другие отростки нейрона называются дендритами . Этот термин, происходящий от греческого слова dendron — «дерево», означает, что они имеют древовидную форму. На дендритах и на поверхности центральной части нейрона, окружающей ядро (и называемой перикарионом , или телом клетки), находятся входные синапсы, образуемые аксонами других нейронов. Благодаря этому каждый нейрон оказывается звеном той или иной нейронной сети.
В разных участках цитоплазмы нейрона содержатся различные наборы специальных молекулярных продуктов и органелл. Шероховатый эндоплазматический ретикулум и свободные рибосомы обнаружены только в цитоплазме тела клетки и в дендритах. В аксонах эти органеллы отсутствуют, и поэтому синтез белка здесь невозможен. Окончания аксонов содержат органеллы, называемые синаптическими пузырьками , в которых находятся молекулы медиатора, выделяемого нейроном. Полагают, что каждый синаптический пузырек несет в себе тысячи молекул вещества, которое используется нейроном для передачи сигналов другим нейронам (см. рис. 29).

Рис. 29. Схема выброса медиатора и процессов, происходящих в гипотетическом центральном синапсе.
Дендриты и аксоны сохраняют свою форму благодаря микротрубочкам, которые, по-видимому, играют также роль в передвижении синтезированных продуктов из центральной цитоплазмы к очень далеким от нее концам ветвящихся аксонов и дендритов. При методе окраски, разработанном Гольджи, используется металлическое серебро, которое связывается с микротрубочками и позволяет выявить форму изучаемой нервной клетки. В начале XX века испанский микроанатом Сантьяго Рамон-и-Кахал почти интуитивно применил этот метод для установления клеточной природы организации мозга и для классификации нейронов в соответствии с их уникальными и общими структурными особенностями.
Различные названия нейронов
Нейроны в зависимости от контекста могут называться по-разному. Иногда это может сбить с толку, но на самом деле это очень похоже на то, как мы называем себя или наших знакомых. Смотря по обстоятельствам, мы говорим об одной и той же девушке как о студентке, дочери, сестре, рыжеволосой красавице, пловчихе, любимой или члене семейства Смитов. Нейроны тоже получают столько ярлыков, сколько различных ролей они выполняют. Разные ученые использовали, вероятно, все достойные внимания свойства нейронов в качестве основы для их классификации.
Каждая уникальная структурная особенность того или иного нейрона отражает степень его специализации для выполнения определенных задач. Можно называть нейроны в соответствии с этими задачами, или функциями. Это один способ. Например, нервные клетки, объединенные в цепи, которые помогают нам воспринимать внешний мир или контролировать события, происходящие внутри нашего тела, именуются сенсорными (чувствительными) нейронами. Нейроны, объединенные в сети, вызывающие мышечные сокращения и, следовательно, движение тела, называются моторными или двигательными.
Положение нейрона в сети — другой важный критерий наименования. Нейроны, ближе всего расположенные к месту действия (будь то ощущаемый стимул или активируемая мышца), — это первичные сенсорные или моторные нейроны, или нейроны первого порядка. Далее следуют вторичные нейроны (нейроны второго порядка), затем третичные (третьего порядка) и т.д.
Регуляция нейронной активности
Способность нервной системы и мышц генерировать электрические потенциалы известна давно — со времен работ Гальвани в конце XVIII столетия. Однако наши знания о том, как возникает это биологическое электричество при функционировании нервной системы, основаны на исследованиях всего лишь 25-летней давности.
Читать дальше