В третью задачу работы входило определение областей практического использования ТНС. Здесь в первую очередь обращено внимание на решение таких технологических и аналитических проблем, которые связаны с концентрированием и разделением микрокомпонентов, в частности, с экспрессным концентрированием радионуклидов из природных вод с различным содержанием солей с целью их последующего радиометрического или спектрометрического определения. Предпочтительность использования ТНС для концентрирования микрокомпонентов следует из того, что сорбенты являются композиционными материалами, у которых значительную роль занимает носитель. По этой причине полная сорбционная емкость ТНС в расчете на единицу массы или объема сорбента как композиции в целом уступает емкости их гранулированных аналогов (не содержащих носитель, или связующие добавки).
В случае ТНС следует ожидать более полной реализации теоретически достижимой емкости в расчете на единицу массы сорбирующего вещества в силу доступности сорбционных центров. Кроме того в ряде случаев необходимо учитывать и сорбционную емкость носителя. Поэтому в диссертационной работе рассматриваются также вопросы концентрирования и разделения элементов при относительно большой их концентрации в растворе. Решён ряд технологических задач по концентрированию благородных и платиновых металлов, урана и плутония.
1. Физико-химические особенности состояния и поведения вещества в микроконцентрациях в водных растворах
1.1. Значение микро концентрационного уровня растворов в общей и прикладной радиохимии
Понятие и границы микро концентрационного уровня. Значение микро концентрационного уровня растворов в общей и прикладной радиохимии: особенности поведения радионуклидов-микрокомпонентов в водных растворах. Формы состояния радионуклидов-микрокомпонентов в водных растворах.
Понятие микро концентрационного уровня вещества используется достаточно широко, но строгого определения, а особенно численного значения, которое позволило бы ту или иную примесь отнести к микро примесям или определить содержание, как микро концентрации, нет. Мы можем выдвинуть несколько оснований, которые позволили бы отнести тот или иной компонент к микрокомпонентам.
1. Содержание (концентрация) данного компонента в изучаемой системе. Это самое доступное и тривиальное определение, но его недостатком будет являться то, что отнесение компонента к микрокомпоненту в этом случае будет зависеть от уровня развития аналитической химии.
2. Влияние на свойства системы. Это основание получило свое развитие с развитием тонкой химической технологии, получением особо чистых веществ. В природе абсолютно чистых веществ не существует. Появление абсолютно чистого вещества сразу же вызвало бы возникновение самопроизвольно и необратимо протекающего интенсивного процесса растворения в этом веществе компонентов окружающей среды и ее примесей. Существуют примеси, присутствие которых в микро концентрациях влияет на макро свойства объекта: полупроводники, фосфоры и т.д. В этом случае задача может быть двоякой. С одной стороны, необходимо получение особо чистого вещества, а с другой – возникает необходимость строго дозированного введения примеси.
3. Аномалии собственного поведения вещества в микро количествах в физических и физико-химических процессах. В технологии получения особо чистых веществ они (т.е. особо чистые вещества) рассматриваются как предельно разбавленные растворы примесей, которые характеризуются тем, что межмолекулярное (межионное) взаимодействие сохраняется только между основными компонентами и микро примесями. Ионы и молекулы микро примесей хаотически распределяются в макрокомпоненте и полностью сольватируются с максимальным координационным числом. Поэтому дальнейшее разбавление не изменяет энергии взаимодействия молекулы микро примеси с окружающими ее молекулами основного компонента. Понятие микро примесь и соответствует достижению такого предельного разбавления. Взаимодействие ионов и молекул микро примеси В с молекулами растворителя А , находящимся не только в непосредственном окружении, но и в удаленных объемах раствора, приводит к известной нейтрализации ионных и молекулярных полей микрокомпонентов. Поэтому реакция
(А–В) + (А–В) ↔ (А–A) + (В–В)
сдвинута влево, и вероятность образования между примесями химических соединений или ассоциатов ( В-В ) в результате крайне редких соударений сольватированных частиц ( А-В ) ничтожно мала.
Читать дальше