Владимир Трошин - Слова и числа

Здесь есть возможность читать онлайн «Владимир Трошин - Слова и числа» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2020, ISBN: 2020, Жанр: Прочая научная литература, Развлечения, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Слова и числа: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Слова и числа»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Данный сборник занимательных материалов предназначен для тех, кто интересуется головоломками, логическими задачами. Он раскрывает связи между двумя основными предметами курса средней школы: русским языком и математикой. Собранные материалы можно использовать как на уроках, так и на внеклассных занятиях, в организации проектной деятельности, в подготовке тематических презентаций. Максимум желаний автора, чтобы эту книгу прочитали любознательные учащиеся. Она рассказывает о письменности и интересных фактах, связанных с ней, а расширение общего кругозора всегда дает только положительные результаты.

Слова и числа — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Слова и числа», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Ленин ел.

Огонь – лоб больного!

Театр тает.

Искать такси.

Да, искать такси – ад.

Осело колесо.

Леша на полке клопа нашел.

На в лоб, болван!

Я не реву – уверен я.

Любители словесных игр не ограничиваются отдельными предложениями, вот пример короткого сочинения о вопросах питания:

Ел еж желе,

А сыр крыса,

Ишак каши,

А жук ужа.

Ужи жижу,

Ил ели.

Я

Мед ем

И щи.

А щи пища.

Автор Алексей Кашеваров

Примеры палиндромов из классики:

«А роза упала на лапу Азора».

А. А. Фет

«Я разуму уму заря.

Я иду с мечем, судия».

Г. Р. Державин

Море могуче. В тон ему, шумен, отвечу Гомером:

Море, веру буди – ярок, скор, я иду буревером.

Д. Авалиани

«Хорошо. Шорох.

Утро во рту.

И клей елки

Течет».

С. Кирсанов – отрывок стихотворения

У Семена Кирсанова несколько палиндромических стихотворений и интересные размышления на эту тему. На русском языке палиндромы писали В. В. Хлебников, В. Я. Брюсов, И. Л. Сельвинский, А. А. Вознесенский.

Через «Sator Arepo» у нас произошел плавный и незаметный переход от отдельный слов палиндромов к палиндромам предложениям. Пошли фразы, в которых каждое отдельное слово не являлось палиндромом, а предложение в целом, если не обращать внимания на расстановку пробелов, палиндромом было. В математике к понятию палиндрома нужен другой подход, потому что, в отличие от слова, любое число, написанное произвольным набором цифр, имеет смысл, например, 1234567890987654321 – вполне реальное число. Только содержательная сторона, изюминка идеи отражения здесь отсутствует, посмотришь на это число, и скажешь: «Ну, и что?». Можно поставить вопрос так: найти квадраты целых чисел, которые неизменно читаются как слева направо, так и наоборот. Некоторые из них найти легко: 11 2=121, 111 2=12321, 1111 2=1234321. Все получившиеся числа палиндромы, и данное правило применимо к любому числу единиц, не превосходящему девяти. Есть и другие случаи, но их найти труднее, например 264 2=69696, 836 2=698896, 2285 2=5221225. Одним вопросом намечено целое направление для поиска числовых палиндромов с определенным смыслом.

Есть палиндромы и среди кубов, например 11 3=1331, причем в большинстве случаев, если куб – палиндром, то и кубический корень из него – тоже палиндром. Далее 11 4=14641. Ожидаемого результата с пятой степенью не получается: 11 5=161051 – не палиндром. Поиск палиндромов среди пятых степеней, пока не дал результатов. Высказана гипотеза, согласно которой не существует чисел палиндромов вида x k при k >4. Её кому-то нужно доказать или опровергнуть [??]

Попробуйте поискать, поэкспериментировать, используя электронную таблицу Excel в офисном пакете. Там есть встроенная функция степени и таблицу чисел легко вводить методом протягивания. Считать не придется, результат определяется только визуально. Если вы владеете любым простейшим языком программирования типа Basic , то можете запрограммировать и вывод итогового палиндрома, если он найдется, конечно. Работа интересная, в мире столько интересного, делал бы сам, но оставляю вам.

Другой вопрос – сколько существует простых чисел палиндромов. Простыми называются числа, не имеющие делителей кроме единицы и самого себя. Среди первых пятидесяти простых чисел я нашел шесть палиндромов: 11, 101, 131, 151, 181, 191. Сколько их всего – неизвестно! Высказывалось предположение о том, что простых чисел палиндромов бесконечно много, но эта гипотеза пока не доказана [??]

Одна знаменитая гипотеза в теории чисел так и называется «гипотеза о палиндромах», и состоит в следующем. Если взять некоторое многозначное число и к нему прибавить число с переставленными в обратном порядке цифрами, потом то же самое проделать с полученной суммой, то, повторяя эти действия несколько раз, вы непременно получите число-палиндром. Гипотеза утверждает, что независимо от того, какое число выбрано, после конечного числа шагов вы непременно получите палиндром.

Иногда для достижения симметричного результата приходится делать большое число - фото 57

Иногда для достижения симметричного результата приходится делать большое число шагов, например, для числа 89 ожидаемый результат получается только после 24-го шага. Существует ли число, которое никогда не приведет к симметричному результату? Это никем еще не доказано! Наименьшее число, с которым еще не ясно – это 196. Математики на компьютерах проделали сотни тысяч шагов, но получить палиндром так и не удалось, хотя никем не доказано, что он никогда не появится [??]. Теперь осуществим переход к математическим предложениям палиндромам, есть ведь и такие в богатом мире математики. Для этого нужно использовать математические действия. Начнем со сложения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Слова и числа»

Представляем Вашему вниманию похожие книги на «Слова и числа» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Слова и числа»

Обсуждение, отзывы о книге «Слова и числа» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x