Действие дофаминергических нейронов в VTA обеспечивается через различные афференты и, в пределах VTA, GHS-R1A представлены не только дофаминергическими клетками, но также пресинаптическими афферентами (Abizaid et al., 2006) которые могут обеспечивать способность грелина активировать систему награды. Особенно заметна возможность грелина повышать локомоторную активность, выброс прилежащего дофамина в условиях предпочтения места (совмесное воздействие подкрепления с грелин-парной средой), которая ослаблялась неселективными антагонистами глутамат NMDA рецепторов (AP5) (Jerlhag et al., 2011). Супрессия GHS-R1A уменьшает подкрепляющие свойства алкоголя и соответственно снижает потребление алкоголя у мышей (Jerlhag et al., 2009), а воздействие антагонистов GHS-R1A снижает подкрепляющие возможности амфетамина и кокаина (Jerlhag et al., 2010). Клинические данные также говорят о роли GHS-R1A в регуляции потребления наркотиков (Landgren et al., 2008, 2010). Интересен тот факт, что ограничение пищи, которое повышает уровень грелина (Gualillo et al., 2002), увеличивает кокаино- и амфетаминоиндуцированную локомоторную стимуляцию, увеличивает поиск кокаина и самостимуляцию от какоина или амфетамина у крыс (Carroll et al., 1979).
В исследованиях человеческого генома гиплотип грелинового гена был связан с отцовским наследованием расстройств употребления алкоголя (Landgren et al., 2010) и с повышением степени алкогольной зависимости (Landgren et al., 2008).
После употребления алкоголя уровень грелина в плазме снижается у здоровых особей (Calissendorff et al., 2005, 2006; Zimmermann et al., 2007) в одинаковой степени как и после приема пищи (Tschop et al., 2001). Было показано, что повышение уровня грелина во время первоначальной фазы абстиненции, не отличается от здоровой группы поздних фаз абстиненции (Wurst et al., 2007), и что повышение уровня грелина связано с непреодолимым желанием во время абстиненции (Addolorato et al., 2006).
Таким образом, точный механизм, через который грелин вызывает потребление и поиск награды достаточно хорошо изучен, но вероятно включает работу на уровне холинергическо-дофаминергической системы подкрепления. GHS-R1A представлены пре- и постсинаптически в VTA (Abizaid et al., 2006), а также на холинергических нейронах в LDTg (Dickson et al., 2010). Грелиновые инъекции в эти области мозга повышают прилежащий дофамин (Jerlhag et al., 2007), повышают потребление алкоголя (Jerlhag et al., 2009) и потребление пищи совместно с мотивированными поведениями, связанными с предпочитаемой пищей (Egecioglu et al., 2010; Skibicka et al., inpress-b). Центральная грелиновая сигнальная система изменяет некоторые компоненты дофаминергических нейронов в VTA и повышает возможность подкрепляющих агентов, таких как пища, алкоголь или наркотические вещества, активируя среднемозговую дофаминовую систему подкрепления (Holst et al., 2003). Возможно GHS-R1A регулируются независимо от грелина, например, через гетеродимеризацию на дофаминовые D1-рецепторы (Jiang et al., 2006).
Центральная грелиновая система показала значение в подкреплении от алкоголя (Jerlhagetal.,2009, inpress), кокаина, амфетамина (Jerlhag et al., 2010; Wellman et al., 2005; Tessari et al., 2007), и предпочитаемой пищи (Erecioglu et al., 2010; Perello et al., 2010; Skibicka et al., inpress-a, inpress-b). Совместно эти данные подразумевают, что грелиновая центральная система, включая GHS-R1A, может являться ведущей целью для развития стратегии лечения наркотической зависимости.
1.5. Кортиколибериновая система мозга
В 1950-х гг. в гипоталамусе обнаружили фактор пептидной природы, активирующий гипоталамо-гипофизарно-надпочечниковую систему (ГГНС). И только в 1981 г. этот фактор – КРГ – выделили из гипоталамуса овцы (Vale et al., 1981). Доказали, что КРГ является пептидом, состоящим из 41 аминокислотного остатка, и синтезируется в парвоцеллюлярных нейронах гипоталамуса (Vale et al., 1981; Swanson et al., 1983). Под влиянием стрессорных стимулов КРГ транспортируется посредством аксонального транспорта из гипоталамуса в срединное возвышение. Затем он высвобождается в систему портальной циркуляции и активирует высвобождение дериватов проопиомеланокортина (таких как АКТГ и β-эндорфин) из передней доли гипофиза. АКТГ попадает в общую систему кровообращения, достигает надпочечников и активирует высвобождение глюкокортикоидов. КРГ-иммунореактивные клетки обнаружили не только в паравентрикулярном ядре гипоталамуса, но и экстрагипоталамически. КРГ-иммунореактивные клетки широко представлены в центральном ядре миндалины, ядре ложа конечной полоски, голубом пятне (locuscoeruleus), парабрахиальных ядрах, дорсальном комплексе блуждающего нерва, префронтальной коре (Swanson et al., 1983). Анатомическое распределение КРГ говорит об участии этого нейропептида в регуляции реакций на стрессорные раздражители, вегетативной нервной системы, потребления пищи и когнитивных процессов. Позже, фармакологическими исследованиями (Nijsen et al., 2000; vanGaalen et al., 2003; Zorrilla et al., 2003) подтвердилось решающее значение КРГ в контроле этих физиологических процессов. Участие КРГ в регуляции стрессорных реакций подтверждается данными об увеличении содержания пептида в реакции на стресс в различных областях мозга, включая медиабазальные отделы гипоталамуса и центральное ядро миндалины (MerloPich et al., 1993; Merali et al., 1998; Hand et al., 2002; Cook, 2004). Было показано, что длительный стресс ускоряет адаптацию гипоталамической и экстрагипоталамической КРГ-систем, что меняет поведенческие и физиологические ответы на стресс (Albeck et al., 1997; Breese et al., 2004; Bruijnzeel et al., 2001, 2005).
Читать дальше