Теоретики уже давно пытаются предсказать, сколько этих нейтралино должно было выжить до наших дней, а также массу нейтралино. Когда два этих числа сложили, получилось практически то количество темной материи, которое, по разным оценкам, существует во Вселенной. Физикам также понравилось, что нейтралино никто не изобретал специально для решения проблемы темой материи. Нейтралино «там» есть, а его возможная связь с темной материей – это просто «бонус». Нейтралино – это вимп, о которых я тоже говорил выше. Вимп не взаимодействует через электромагнетизм, а это означает, что мы его не увидим ни на одной длине волны, и редко взаимодействует с атомным ядром. Нейтралино пытаются обнаружить уже с конца 1980-х годов, и особенно активно с 2003 года. Считается что эта частица – «любимчик» у физиков именно благодаря указанным в начале этого абзаца расчетам. Вес нейтралино должен быть в 50, а то и 100 раз меньше массы протона. Но после многих лет экспериментов с нулевым результатом многие склонились в сторону аксиона, назвав его кандидатом номер один.
Гравитон – это гипотетическая элементарная частица без массы, переносчик гравитационного взаимодействия без электрического и других зарядов. Гипотеза о существовании гравитонов появилась благодаря квантовой теории поля и моделированию поведения остальных фундаментальных взаимодействий с помощью подобных частиц: фотоны в электромагнитном взаимодействии, глюоны в сильном, бозоны в слабом. Аналогично за гравитационное взаимодействие должна отвечать некая элементарная частица. Термин был предложен в 1930-х годах, считается, что его авторы русские ученые Д. Блохинцев и Ф. Гальперин. Нельзя исключать, что гравитоны являются квазичастицами, удобными для описания слабых гравитационных полей в масштабах длины и времени, которые существенно больше планковской длины и планковского времени, но непригодными для описания сильных полей и процессов с характерными масштабами, близкими к планковским. В теориях супергравитации вводится гравитино – суперпартнер гравитона, как нейтралино у нейтрона.
Как ищут вимпы? Используются прямые и косвенные методы. Прямой поиск – это выявление их столкновений с ядрами обычной материи, служащей рабочим телом детектора. Считается, что в 1 м3 пространства вблизи земной поверхности содержится от нескольких сотен до нескольких тысяч вимпов. При столкновениях они теряют часть кинетической энергии и отдают ее детектору. Подобные столкновения происходят всего несколько раз в сутки, выделяемая энергия очень мала, но их можно зарегистрировать и отделить от столкновений с космическими лучами и земными радионуклидами. При отскоке ядра могут излучаться кванты света, которые уловят фотоумножители. При столкновении с вимпом атом может превратиться в ион, потерять часть электронов, которые можно детектировать.
Если в качестве рабочего тела используется материя в твердом состоянии, столкновения возбуждают колебания кристаллической решетки, и их тоже можно отследить. В реальных экспериментах три указанных выше способа можно скомбинировать. Самыми чувствительными детекторами вимпов являются установки на жидком ксеноне. В них используется комбинированный подход. Косвенный поиск темной материи обычно направлен на регистрацию гамма-квантов, которые могут родиться при столкновениях вимпов в дальнем космосе и, например, внутри Солнца. Поскольку природа вимпов неизвестна, пока никто в точности не знает, что нужно искать и как интерпретировать полученные результаты.
Ведется и поиск виспов, в первую очередь аксиона, о чем я уже упоминал выше. Эту легкую стабильную незаряженную частицу, теоретически предсказанную в рамках квантовой хромодинамики для объяснения отсутствия нарушения CP-симметрии, сложно обнаружить, но в сильных магнитных полях аксион может индуцировать возникновение фотонов. Именно этот эффект и используется в экспериментах по поиску аксионов, которые условно можно назвать «свет сквозь стену». Во время экспериментов лазерное излучение направляется на непрозрачную стенку, перед и за которой установлены сверхпроводящие магниты, генерирующие мощное магнитное поле. Существует вероятность, что фотон в сильном магнитном поле перед стенкой превратится в аксион, который пройдет сквозь преграду, а затем снова в фотон, который уже можно обнаружить с помощью очень чувствительных детекторов.
Возможно, поиск не очень успешен, так как для этого не хватает денежных средств, в особенности во время экономического кризиса. Если аксион и существует, его можно зарегистрировать лишь в очень сильных магнитных полях, где он превращает виртуальные фотоны в реальные. Для этого отлично подошли бы 18-тесловые магниты, которые уже есть на рынке и используются, еще лучше – экспериментальные 32-тесловые. Они стоят больших денег, а их не так просто получить. Те, кто в США финансирует эту область физики, не слишком верят в существование аксионов, считая, что есть гораздо более важные проекты, а в других странах ими практически не занимаются.
Читать дальше
Конец ознакомительного отрывка
Купить книгу