Маргарита Акулич - Маркетинг B2B - часть вторая

Здесь есть возможность читать онлайн «Маргарита Акулич - Маркетинг B2B - часть вторая» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Маркетинг B2B: часть вторая: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Маркетинг B2B: часть вторая»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга, по сути, является продолжением книга М. В. Акулич «Маркетинг B2B».В данной книге рассмотрен ряд важнейших и актуальных аспектов, касающихся B2B-маркетинга, таких как «Искусственный интеллект: возможности и применение в продажах и маркетинге в сфере B2B», «B2B-маркетинговые способы продвижения», «Построение долгосрочных B2B-отношений» и др.Сформулированы некоторые полезные рекомендации.

Маркетинг B2B: часть вторая — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Маркетинг B2B: часть вторая», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Такое отношение пронизывает все должности – от младших до руководителей».

Возможные применения AI в продажах и дистрибуции

Компании, которые разумно используют AI в продажах и создают общую базу данных в сотрудничестве с отделом маркетинга, получают ценную информацию о своих клиентах. Поскольку многие процессы искусственного интеллекта можно автоматизировать, они избавляют отдел продаж от потерь времени после начального этапа. Сэкономленное время, в свою очередь, может быть потрачено на фактическую работу по продажам и маркетингу.

2.2 Динамическое ценообразование. Прогнозная оценка потенциальных клиентов

Динамическое ценообразование

Источник httpswwwinstagramcomuxpricehlru Динамическое ценообразование - фото 11

Источник: https://www.instagram.com/uxprice/?hl=ru

Динамическое ценообразование основано не на затратах, а на принятии цен покупателями, а также на спросе и предложении на рынке.

В гибкой корректировке цен на основе рыночного спроса нет ничего нового. Однако онлайн-игроки, такие как Amazon, ставят перед традиционными трейдерами новые задачи, поскольку они могут автоматически изменять свои цены почти в реальном времени с помощью алгоритмов.

Интеллектуальный алгоритм устанавливает цену для отдельных клиентов таким образом, чтобы они были готовы покупать, и чтобы одновременно при этом не страдали продажи.

Помимо демографических характеристик, оптимизация цен с помощью AI также использует в качестве базы данных результаты анализа поведения клиентов, такие как [2]:

«Цены, которые клиент принимал в прошлом. Поведение похожих покупателей. Текущая динамика цен на рынке. Другие факторы, имеющие отношение к успешным транзакциям в прошлом».

Таким образом, преимущества динамического ценообразования заключаются в автоматическом изменении цен в случае изменений рыночной среды, адаптации к фактической готовности клиентов платить и большей эффективности.

Динамическое ценообразование в настоящее время используется в основном в онлайн-секторе. Поскольку у многих средних компаний уже есть интернет-магазин, эта оптимизированная цена больше не является вариантом выбора лишь для крупных игроков. Ее также могут разумно использовать небольшие компании. Однако предварительным условием для этого является высокий уровень точности, доступности и полноты данных, а также подготовка всей компании к динамическому ценообразованию (например, адаптация печатных прайс-листов, маркетинговые меры и т. д.).

Прогнозная оценка потенциальных клиентов

Predictive Lead Scoring использует алгоритмы прогнозирования машинного обучения для анализа существующих клиентов, чтобы определить, насколько вероятно, что потенциальный клиент (= контакт) может быть получен в качестве клиента.

С помощью искусственного интеллекта сотрудники отделов продаж и маркетинга получают глубокие знания о клиенте и увеличивают вероятность успешного заключения сделки, поскольку могут сосредоточиться на перспективных клиентах и целенаправленно обращаться к ним.

Приложение AI оценивает, какое поведение и какие характеристики оказываются интересными лидерам продаж (=квалифицированным руководителям отделов продаж). На основе этих данных затем могут быть идентифицированы те потенциальные клиенты, которые готовы к разговору о продажах и могут быть отправлены в отдел продаж.

Оставшиеся лиды нуждаются в дальнейшей поддержке со стороны отдела маркетинга.

Данные третьих сторон также могут быть включены в анализ.

Одним из впечатляющих примеров является пример Harley-Davidson в Нью-Йорке [2]:

«использование Albert Ki привело к увеличению числа потенциальных клиентов на 2,930%. Технология фокусируется на поведении, которое побуждает потенциальных клиентов связываться с Harley Davidson. Например, AI исследовал рекламу с призывом «Купи!» На этот призыв было получено значительно меньше ответов, чем на призыв «Звоните!». Благодаря изменению всего одного слова количество ответов на размещенные объявления за рассматриваемый период увеличилось на 447%.

Еще одним успешным примером служит пример определения ценных прошлых клиентов. AI отобрал тех людей, которые либо уже приобрели продукт Harley-Davidson, либо добавили его в свою онлайн-корзину, либо были среди 25 процентов посетителей веб-сайта, которые провели там больше всего времени. Эти «ценные прошлые клиенты» использовались в качестве основы для выявления «двойников», которые не были клиентами Harley-Davidson, но в остальном отвечали многим критериям группы и, следовательно, являлись отличными потенциальными клиентами.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Маркетинг B2B: часть вторая»

Представляем Вашему вниманию похожие книги на «Маркетинг B2B: часть вторая» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Маргарита Акулич - Маркетинг на YouTube
Маргарита Акулич
Отзывы о книге «Маркетинг B2B: часть вторая»

Обсуждение, отзывы о книге «Маркетинг B2B: часть вторая» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x