P. R. Y. Backwell, M. D. Jenmons, N. I. Passnsore, and J. H. Christy, “Synchronous waving in a fiddler crab,” Nature 391 (1998), pp. 31–32. Популярный материал на эту тему был опубликован в газете New York Times : Malcolm W. Browne, “Flirting male crabs found to wave claws in unison,” New York Times (January 6, 1998), p. C4.
Основополагающий материал по этой теме можно найти в статье Martha K. McClintock, “Menstrual synchrony and suppression,” Nature 229 (1971), pp. 244–245.
Анонимный автор, “Olfactory synchrony of menstrual cycles,” Science News 112 (July 2, 1977), p. 5. Оригинальный материал был опубликован спустя три года; см. статью M. J. Russell, G. M. Switz, and K. Thompson, “Olfactory influences on the human menstrual cycle,” Pharmacology Biochemistry and Behavior 13 (1980), pp. 737–738.
Kathleen Stern and Martha K. McClintock, “Regulation of ovulation by human pheromones,” Nature 392 (1998), pp. 177–179. Работа Макклинток, касающаяся менструального синхронизма и феромонов человека, остается весьма спорной. В статье Martha K. McClintock, “Whither menstrual synchrony?” Annual Review of Sexual Research 9 (1998), pp. 77–95, Макклинток выступает с энергичной защитой своего мнения. См. также увлекательный и познавательный материал на эту тему в популярной книге Natalie Angier, Woman: An Intimate Geography (New York: Houghton Mifflin, 1999), pp. 170–175. Автор этой книги характеризует Макклинток как «женщину, которая носит яркие шарфы поверх кашемировых свитеров, необычные украшения, сизо-серые носки с изображениями черных рыб и излучает неизбывный энтузиазм».
Norbert Wiener, Cybernetics, 2 ndedition (Cambridge, Massachusetts: MIT Press, 1961). (Русский перевод: Н. Винер. Управление и связь в животном и машине. Новые главы кибернетики. М.: Советское радио, 1963.)
Обзор научных достижений Винера и небольшую подборку забавных случаев из его жизни можно найти в книге Pest R. Masani, Norbert Wiener 1894–1964 (Vita Mathematics, vol. 5), (New York Springer-Verlag, 1990).
В последней главе книги Cybernetics излагаются представления Норберта Винера об альфа-ритме мозговых волн и приводятся его рассуждения о самоорганизации в других системах связанных осцилляторов. (Он полагал, что это имеет какое-то отношение к вирусам, генам и раковым заболеваниям.) Более раннее изложение этих проблем, имеющее более технический характер, можно найти в книге Norbert Wiener, Nonlinear Problems in Random Theory (Cambridge, Massachusetts: MIT Press, 1958). (Русский перевод: Н. Винер. Нелинейные задачи в теории случайных процессов. М.: ИЛ, 1961.)
Спектр с двойным «проседанием» воспроизведен по диаграмме на стр. 69 книги Norbert Wiener, Nonlinear Problems in Random Theory (Cambridge, Massachusetts: MIT Press, 1958).
«Не отваживаясь высказываться…» Cybernetics, стр. 201
Самая ранняя его работа по групповому синхронизму, опубликованная в 1965 г., основывалась на эксперименте с массивом из 71 мигающей неоновой лампочки, которые электрически были соединены друг с другом. Уинфри называл такое приспособление «светлячковой машиной». Он писал, что его цель заключается в том, чтобы «просто посмотреть, как все это будет происходить»; см. главу 11, The Geometry of Biological Time. Вскоре он понял, что компьютерное моделирование обеспечивает гораздо большую гибкость, контроль и удобство интерпретации. Результаты этих исследований описаны в статье Arthur T. Winfree, “Biological rhythms and the behavior of populations of coupled oscillators,” Journal of Theoretical Biology 16 (1967), pp. 15–42, на которой базируется остальной материал этого раздела.
Для читателей, сведущих в математике или физике: возможно, вас интересует, что нового и необычного было в задаче, которую сформулировал для себя Уинфри; в частности, чем она отличается от всего того, что нам рассказывали в университетах о связанных осцилляторах. Нужно помнить, что задачи, излагаемые в учебниках, исходят из того, что осцилляторы линейны (то есть они являются простыми гармоническими осцилляторами) и связаны между собой линейными взаимодействиями (например, с помощью пружин, которые подчиняются закону Гука). В этом простом случае динамические характеристики определяются в явном виде по методу нормальных режимов. Однако Уинфри понимал, что такой подход был бы неприменим к данной биологической задаче, поскольку биологические осцилляторы не линейны. В отличие от своих линейных аналогов, которые могут совершать колебания с любой амплитудой, большинство биологических осцилляторов обязательно регулируют свою амплитуду; следовательно, лучше всего моделировать их как нелинейные самоподдерживающиеся осцилляторы с устойчивым предельным циклом. В середине 60-х годов наличная математическая теория таких объектов заканчивалась на системах из двух или трех связанных осцилляторов с предельным циклом. Никто не имел ни малейшего понятия об их популяциях , особенно если их частоты были распределены случайным образом по всей популяции. К тому же нужно понимать, что такие осцилляторы не следует путать с консервативными нелинейными осцилляторами (например, ангармоническими осцилляторами, используемыми в молекулярной динамике). Такие осцилляторы запасают энергию и могут иметь любую амплитуду – что, опять-таки, является недопустимым предположением, когда речь идет о моделировании биологических самоподдерживающихся осцилляторов.
Читать дальше
Конец ознакомительного отрывка
Купить книгу