Рудольф Ташнер - Число, пришедшее с холода. Когда математика становится приключением

Здесь есть возможность читать онлайн «Рудольф Ташнер - Число, пришедшее с холода. Когда математика становится приключением» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2018, ISBN: 2018, Издательство: КоЛибри, Азбука-Аттикус, Жанр: Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Число, пришедшее с холода. Когда математика становится приключением: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Число, пришедшее с холода. Когда математика становится приключением»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Знание математики приобретает особое значение в нашу цифровую эпоху. Рассказывая о прошлом, настоящем и будущем математической мысли и о первооткрывателях важнейших математических законов, известный австрийский ученый и популяризатор науки Рудольф Ташнер посвящает нас не только в тайны цифр и чисел, но и шире — в тайны познания.
«Из великого множества историй о якобы безмерной власти чисел я отдал предпочтение тем, в которых проводится идея о том, что числа не просто оказались у людей под рукой. Числа были изобретены для того, чтобы упорядочить мир и сделать его обозримым. Числа — наши слуги, а отнюдь не господа. Числа — не фундамент бытия, но удобные обозначения, облегчающие понимание мира».

Число, пришедшее с холода. Когда математика становится приключением — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Число, пришедшее с холода. Когда математика становится приключением», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Пример сказочно большого числа, перед которым бледнеет даже число 3↑↑↑3, мы получим, если воспользуемся методом, придуманным британским математиком Рубеном Луисом Гудстейном в 1944 г. Однако для того, чтобы проследить за его рассуждениями, мы начнем рассказ издалека.

Сначала мы разберемся, что значит представление числа «по основанию». При этом основанием мы назовем любое число, отличное от единицы. Рассмотрим, например, наименьшее из возможных оснований — число 2, и число 42. Мы делим это число на основание, то есть в нашем случае 42:2, получаем частное 21 и остаток 0 и записываем результат следующим образом:

42 = 21 × 2 + 0.

Теперь разделим частное на основание, в нашем примере, 21:2, и получаем частное 10 и остаток 1, то есть:

21 = 10 × 2 + 1.

Эту игру мы продолжим до тех пор, пока не получим частное, равное нулю. То есть последовательность результатов деления

42 = 21 × 2 + 0

21 = 10 × 2 + 1

10 = 5 × 2 + 0

5 = 2 × 2 + 1

2 = 1 × 2 + 0

1 = 0 × 2 + 1.

Теперь выписываем всю последовательность результатов:

42 = 21 × 2 + 0 =

= (10 × 2 + 1) × 2 + 0 = 10 × 2² + 1 × 2 + 0 =

= (5 × 2 + 0) × 2² + 1 × 2 + 0 = 5 × 2³ + 0 × 2² + 1 × 2 + 0 =

= (2 × 2 + 1) × 2³ + 0 × 2² + 1 × 2 + 0 = 2 × 2 4 + 1 × 2³ + 0 × 2² + 1 × 2 + 0 =

= (1 × 2 + 0) × 2 4 + 1 × 2³ + 0 × 2² + 1 × 2 + 0 =

=1 × 2 5 + 0 × 2 4 + 1 × 2³ + 0 × 2² + 1 × 2 + 0.

Итак, результатом

42 = 1 × 2 5 + 0 × 2 4 + 1 × 2³ + 0 × 2² + 1 × 2 + 0

число 42 представлено по основанию 2. Назовем полученные перед степенями двойки множители 1, 0, 1, 0, 1, а также приписанный в конце 0 (это множитель при нулевой степени 2 или 2 0— которая равна единице, ибо нулевая степень любого числа считается равной единице) «цифрами» числа 42 по основанию 2. Выписанное выше представление 42 по основанию 2 можно в сокращенном виде записать так (1 0 1 0 1 0) 2, или, подробнее:

42 = 1 × 2 5 + 0 × 2 4 + 1 × 2³ + 0 × 2² + 1 × 2 + 0 = (1 0 1 0 1 0) 2 .

Число 42 можно представить и по основанию 5. В этом случае процесс деления выглядит так:

42 = 8 × 5 + 2

8 = 1 × 5 + 3

1 = 0 × 5 + 1.

Теперь можно объединить эти результаты, представив их так:

42 = 8 × 5 + 2 = (1 × 5 + 3) × 5 + 2 = 1 × 5² + 3 × 5 + 2,

получив в итоге

42 = 1 × 5² + 3 × 5 + 2 = (1 3 2) 5 .

Еще проще представить 42 по основанию 7. Здесь достаточно двух делений

42 = 6 × 7 + 0

6 = 0 × 7 + 6,

откуда непосредственно вытекает представление

42 = 6 × 7 + 0 = (6 0) 7 .

Так же просто представить 42 по основанию 10. Для этого тоже нужны всего два деления:

42 = 4 × 10 + 2

4 = 0 × 10 + 4,

откуда следует представление 42 = 4 × 10 + 2 = (4 2) 10.

Представление числа по основанию 10 известно нам со времен Адама Ризе: это обычная запись числа в десятичной системе.

Нам, однако, для последующего изложения важны различные основания, ибо только так мы поймем, что имел в виду Гудстейн, говоря о «раздувании» чисел: при раздувании числа 42 от основания 5 к основанию 6 в представлении

42 = 1 × 5² + 3 × 5 + 2

заменяют все числа 5 числом 5 + 1 = 6 и рассчитывают полученное таким образом число:

1 × 6² + 3 × 6 + 2 = 36 + 18 + 2 = 56.

При раздувании от основания 5 до основания 6 из числа 42 получают большее число, а именно 56. Точно так же можно раздуть число 42 от основания 7 до основания 8: исходя из равенства 42 = 6 × 7 + 0, образуют, заменяя 7 выражением 7 + 1 = 8, выражение 6 × 8 + 0 = 48. Здесь из числа 42 получается число 48. При раздувании числа 42 от основания 10 к основанию 11 заменяют 10 числом 10 + 1 = 11 и записывают: 4 × 11 + 2. Это дает раздутое число 46. Однако, раздувая число 42 от основания 2 к основанию 3, мы должны учесть одно дополнительное требование, установленное Гудстейном: по основанию 2 число 42 выглядит так:

42 = 1 × 2 5 + 0 × 2 4 + 1 × 2³ + 0 × 2² + 1 × 2 + 0.

Здесь мы видим показатели степени, которые точно так же можно представить по основанию 2, а именно:

5 = 1 × 2² + 0 × 2 + 1, 4 = 1 × 2² + 0 × 2 + 0, 3 = 1 × 2 + 1 и 2 = 1 × 2 + 0.

Эти представления показателей степеней вводят в вышеприведенную формулу так, чтобы в полученном представлении числа 42 нигде, включая и показатели степени, не встречались числа, бо́льшие 2:

42 = 1 × 2 1 × 22 + 0 × 2 + 1 + 0 × 2 1 × 22 + 0 × 2 +0 + 1 × 2 1 × 2 + 1 + 0 × 2 1 × 2 +0 + 1 × 2 + 0.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Число, пришедшее с холода. Когда математика становится приключением»

Представляем Вашему вниманию похожие книги на «Число, пришедшее с холода. Когда математика становится приключением» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Число, пришедшее с холода. Когда математика становится приключением»

Обсуждение, отзывы о книге «Число, пришедшее с холода. Когда математика становится приключением» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x