Сергей Парновский - Как работает Вселенная - Введение в современную космологию

Здесь есть возможность читать онлайн «Сергей Парновский - Как работает Вселенная - Введение в современную космологию» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2018, ISBN: 2018, Издательство: Альпина нон-фикшн, Жанр: Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как работает Вселенная: Введение в современную космологию: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как работает Вселенная: Введение в современную космологию»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.
Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Как работает Вселенная: Введение в современную космологию — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как работает Вселенная: Введение в современную космологию», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Подставляя уравнение (2.8) в уравнение (2.10), мы получаем уравнение Фридмана для Вселенной, заполненной пылевидной материей, без космологической постоянной и зависимости H(r):

Решив их мы получаем зависимости rt и Ht Вместе с зависимостью ρt - фото 33

Решив их, мы получаем зависимости r(t) и H(t):

Вместе с зависимостью ρt определяемой формулой 28 они завершают описание - фото 34

Вместе с зависимостью ρ(t), определяемой формулой (2.8), они завершают описание трех возможных сценариев космологической эволюции в рамках нерелятивистской космологии.

2.7.2. Исследование решений

Как работает Вселенная Введение в современную космологию - изображение 35

Рассмотрим смысл и свойства решений Фридмана. Прежде всего перейдем от констант А и В к величинам с более четким физическим смыслом. Выберем опорный момент времени в системе наблюдателя, неподвижного по отношению к окружающей среде. Назовем этот момент текущей эпохой или «сейчас». Снабдим все значения, относящиеся к этому моменту, индексом 0. Мы уже делали это раньше, когда ввели параметр Хаббла H0 – текущее значение зависящей от времени постоянной Хаббла H. Следующей используемой величиной будет так называемый параметр плотности материи Ωm = ρ/ρкрит. Как числитель, так и знаменатель этого отношения зависят от времени согласно формулам (2.8) и (2.11). Следовательно, параметр плотности вещества тоже зависит от времени. Обозначим его текущее значение Ωm0. Нам также понадобится текущее значение радиуса сферы r0, играющее роль текущего значения масштабного фактора.

Применив формулы (2.4) и (2.7) к текущей эпохе, мы получаем:

B = ρ0r03 = Ωm0 ρc 0 r03 = 3H02Ωm0 r03/8πG. (2.14)

Из (2.10) и (2.11) определим

Из уравнения 215 мы еще раз убеждаемся что случай Ωm 1 соответствует А - фото 36

Из уравнения (2.15) мы еще раз убеждаемся, что случай Ωm > 1 соответствует А < 0, т. е. закрытой модели, в которой Вселенная в конечном итоге опять собирается в точку, случай Ωm < 1 соответствует открытой модели с А > 0, а Ωm= 1 соответствует плоской модели с А = 0.

Подставляя уравнения (2.14) и (2.15) в уравнение (2.12), мы получаем:

Здесь мы ввели относительный масштабный фактор u rr0 который может быть - фото 37

Здесь мы ввели относительный масштабный фактор u = r/r0, который может быть легко преобразован при r < r0 в красное смещение z простым соотношением 1/u = 1 + z.

Уравнение (2.16) полностью описывает зависимость H(u) или H(z). В современную эпоху u = 1, и оно выполняется автоматически. Проанализируем зависимость постоянной Хаббла от относительного масштабного фактора или красного смещения z.

При Ωm = 1 (плоская модель) имеем H = H0u–3/2, что соответствует монотонному уменьшению Н, стремящемуся к нулю при u → ∞. При Ωm < 1 (открытая модель) постоянная Хаббла также снижается, но медленнее. При Ωm > 1 (закрытая модель) первый член в скобках отрицателен, а второй – положителен. Второй член уменьшается быстрее, чем первый. Таким образом, если бы эта модель допускала большие значения u, то правая часть уравнения (2.16) в конечном итоге стала бы отрицательной, что невозможно. Таким образом, относительный масштабный фактор Вселенной увеличивается до тех пор, пока постоянная Хаббла не становится равной нулю, а после этого уменьшается. Мы можем найти максимальный масштабный фактор, приравняв выражение в квадратных скобках к нулю:

umax = rmax/r0 = Ωm0/(Ωm0 – 1). (2.17)

Чтобы найти зависимости от времени, нам нужно подставить уравнения (2.14) и (2.15) в уравнение (2.13), которое сводится к

Все что требуется чтобы вычислить этот интеграл заглянуть в хороший - фото 38

Все, что требуется, чтобы вычислить этот интеграл, – заглянуть в хороший справочник. В простейшем случае плоской модели (Ωm0= 1) мы получаем:

Значение константы интегрирования выбрано таким образом чтобы момент t 0 - фото 39

Значение константы интегрирования выбрано таким образом, чтобы момент t = 0 соответствовал Большому взрыву.

Для открытой модели (Ωm0 < 1) мы имеем:

где p Ωm01 Ωm0 0 Для закрытой модели Ωm0 1 мы имеем другое - фото 40

где p = Ωm0/(1 – Ωm0) > 0.

Для закрытой модели (Ωm0 > 1) мы имеем другое громоздкое выражение

где s Ωm0Ωm0 1 1 Мы использовали эти формулы для построения рис 22 - фото 41

где s = Ωm0/(Ωm0 – 1) > 1.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как работает Вселенная: Введение в современную космологию»

Представляем Вашему вниманию похожие книги на «Как работает Вселенная: Введение в современную космологию» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как работает Вселенная: Введение в современную космологию»

Обсуждение, отзывы о книге «Как работает Вселенная: Введение в современную космологию» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x