– Вся инфраструктура Pinterest находится в облаке.
– Компания Xerox использовала стратегию облачных вычислений для эффективного анализа данных и снижения скорости изнашивания в своем call-центре на двадцать процентов.
– Компания Caterpillar разрабатывает специальные облачные решения для анализа и отслеживания того, как работает ее техника в совокупности с предоставляемыми финансовыми сервисами, что позволяет существенно сократить расходы на аудит и мониторинг объектов, которые могут быть заложены в рамках сделках финансового лизинга.
– Компания Боинг в 2015 году перешла на облачную платформу. Это ускорило более чем в 100 раз работу ее служб доставки и в шесть раз увеличило утилизацию активов [149] .
.
В России бизнес не всегда спешит переходить на облачные технологии. Это связано с тем, что большинство крупных облачных провайдеров – это зарубежные компании. Поэтому возникают законодательные ограничения и риски, связанные, например, с курсом валют.
Кроме того, многие традиционно не доверяют третьим лицам данные, представляющие собой коммерческую тайну.
Тем не менее, облачные решения появляются и на нашем рынке.
Машинное обучение применяется все чаще
По мере того, как развивалась Big Data-аналитика, некоторые компании стали инвестировать в машинное обучение (ML). Машинное обучение остается одной из самых востребованных и внедряемых технологий. И она еще не исчерпала свой потенциал. По прогнозу аналитической фирмы Ovum [150] .
, машинное обучение – один из главных трендов в Big Data-технологиях. Его применение будет все расширяться. От задач по бизнес аналитике оно перейдет на большинство задач по подготовке и преданализу данных. Не исключено, что ряд задач по интеграции источников данных также будет решаться с привлечением машинного обучения через анализ и интеграцию словарей (описание объектов данных в тех или иных источниках).
Аналитика всего
Предсказательная аналитика тесно связана с машинным обучением. На самом деле, системы ML часто предоставляют инструменты для аналитики интеллектуального программного обеспечения.
На заре появления Big Data компании исследовали свои данные, чтобы понять, что было в прошлом. После этого они начали использовать свои инструменты для анализа, чтобы определять причины тех или иных событий.
Прогностическая аналитика идет еще дальше. Она предсказывает, что произойдет в будущем, используя анализ Big Data. Число организаций, использующих предсказательную аналитику в 2017 году, – не очень большое, всего 29 процентов, согласно опросу 2016 года от PwC.
Тем не менее многие поставщики готовых решений представляют интеллектуальные инструменты для аналитики. И за счет их клиентов количество компаний, использующих предсказательную аналитику, может резко увеличиться.
Большая часть финансовых функций и подразделений также будет заменена алгоритмами и сервисами, позволяющими получать инсайты и ответы на регулярные вопросы со стороны владельцев бизнес-процессов о состоянии дел.
Поменяются и форматы представления данных – в сторону стандартных нотаций (например, XBRL).
Сайты компаний будут иметь интерфейсы для аналитических сервисов, которые будут позволять автоматизировать, например, отчетность для инвесторов.
Big Data приложения – появляется простота и стабильность
Машинное обучение и технологии ИИ используются для создания приложений. Они, например, анализируют предыдущие действия пользователя, и за счет этого делают персонализированные предложения. Одним из известных примеров являются рекомендательные сервисы, которые сейчас используются множеством приложений для электронной коммерции и развлечений.
Развивается направление Intelligent Security
Многие компании также включают Big Data-аналитику в свою стратегию безопасности. Данные из логов организаций предоставляют информацию о прошлых попытках атак. Их можно использовать для прогнозирования и предотвращения будущих атак.
В результате, некоторые компании интегрируют свое ПО для обеспечения безопасности и управления событиями с платформами Big Data, такими как Hadoop. Другие – обращаются к поставщикам решений по безопасности, чьи продукты включают в себя большие возможности для анализа данных.
Все больше решений IoT
Интернет Вещей тоже вносит вклад в Большие данные. Согласно отчету IDC [151] .
,«31,4 процента опрошенных организаций запустили решения IoT, а 43 процента планируют развернуть их в ближайшие 12 месяцев». Со всеми этими новыми устройствами и приложениями, которые появляются в сети, данных будет еще больше, чем раньше. Многим компаниям потребуются новые технологии и системы для обработки возрастающего потока данных, поступающих из их решений IoT. Большую интеграцию и развитие также получат смежные сервисы, где данные с устройств будут использоваться для предоставления сторонних сервисов, например финансовых, таких как страхование имущества или кредитование под поставку объектов имущества.
Читать дальше