Алексей Благирев - Big data простым языком [litres]

Здесь есть возможность читать онлайн «Алексей Благирев - Big data простым языком [litres]» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент АСТ, Жанр: Прочая научная литература, Базы данных, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Big data простым языком [litres]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Big data простым языком [litres]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Наш телефон знает о нас больше, чем мы думаем. Он умеет собирать и анализировать информацию о том, как мы передвигаемся по городу, какие посты лайкаем и какими приложениями пользуемся. Он сообщит о пробках и поторопит на работу, чтобы мы не опоздали; подберет музыку под наше настроение и составит список персональных рекомендаций, чем можно занять себя в течение дня. Телефон – больше не устройство, по которому звонят, это уже средство управления окружающим нас миром. Незаметно мы окружили себя такими интерфейсами, которые создают невидимый барьер между человеком и окружающей средой. Планирование, управление, коммуникация, все теперь строится через эти программы и девайсы. Даже человеческие отношения.
Но насколько глубока кроличья нора? Каждому предстоит разобраться в этом самому. Эта книга поможет донести основные принципы проектирования и создания таких интерфейсов управления бизнесом, обществом и окружающим нас миром посредством Больших данных. Читайте, наслаждайтесь и помните: сожжение книг противозаконно.

Big data простым языком [litres] — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Big data простым языком [litres]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

– Они используют сетевые эффекты. Google Nest стал основой для экосистемы смарт-домашних продуктов и, например, присылает своим клиентам ежемесячную карточку отчета по использованию энергии и сравнивает этот расход с показателями соседей (и это дает контекст). Одновременно с этим компания передает агрегированные данные поставщиков коммунальных услуг. Эта информация может помочь им оптимизировать свои процессы.

– Они объединяют данные по ряду услуг. Одна медицинская компания извлекает данные высокой точности из системы здравоохранения и применяет ее к жизни пациентов для улучшения здоровья человека. Другой пример: сервис Dash берет данные по отзывам и сервисным компаниям у автопроизводителей, а потом делает персонифицированные рассылки своим клиентам.

Консалтинговая компания McKinsey прогнозирует появление двенадцати глобальных экосистем, относящихся к различным сферам бизнеса, к 2025 году.

Глава 8

А что дальше? Проблемы и тренды

В 2015 году исследовательская компания Gartner убрала Big Data со своей «кривой хайпа». Но до сих пор вокруг этого термина существует какая-то лихорадочная активность. По-прежнему идет речь о Big Data-трансформации, но далеко не всегда понятно, что это такое, и какую конкретно пользу оно может принести бизнесу. Сам по себе переход на новые технологии вряд ли может привести к увеличению прибыли или сокращению накладных расходов.

Проблемы с Big Data сегодня

Хотя технологии Big Data сейчас уже применяются промышленно, бо́льшая часть проектов в этой области не имеет успеха. Почему?

Мы думаем, что понимаем Big Data

Проекты, связанные с Big Data-аналитикой, часто воспринимаются всеми (менеджментом и самими разработчиками) как традиционные IT-проекты с фиксированным скоупом (объемом работы).

В реальности же это, скорее, RnD-проект (Research and development или исследование и разработка). И ключевую роль здесь играет именно исследовательская часть. На самом деле, не определены ни конечный результат, ни время, за которое будет получено хоть что-то.

Big Data аналитика – это постоянное исследование, в ходе которого скорее появятся внезапные полезные инсайты, чем стабильные и быстрые бизнес-результаты (конечно, если речь идет о новом проекте). Однако то, как раскрывается ценность этих инсайтов, зависит больше от знания предметной области, чем от количества данных, математической или технической сложности решения. И здесь как никогда справедлива фраза «отрицательный результат – тоже результат», только надо уметь это увидеть.

Еще одна проблема – недостаток специалистов. Покупка инструментов и применение agile-методологии в полной мере ее не решает. Уровень опыта и экспертиза также играют роль в успешном завершении исследовательских проектов Big Data.

Как рассчитать финансовый эффект?

Большая гибкость в отношении сроков и результатов проекта ведет к необходимости выделения большего количества ресурсов. Оно начинает слабо и предсказуемо расти, когда компания сталкивается с реальными долгосрочными задачами и необходимостью соблюдать SLA, а также требования регуляторов.

Сроки гибкие, результат непредсказуем – значит, на проект может уйти больше ресурсов (времени, людей, денег), чем предполагалось.

Проекты, связанные с Большими данными, не всегда решают уникальные задачи. Эти проекты считаются научными без каких-либо бизнес-целей или показателей. Чтобы извлечь максимальную выгоду из этого, нужно направить усилия на конкретную потребность или проблему бизнеса. Чтобы оправдать инвестиции для проектов Big Data, требуется постоянно демонстрировать результаты. Бизнес требует быстрого и гибкого доступа к данным с прозрачными SLA. В результате оказывается, что бизнес ожидает большого количества дешевых инсайтов, а Big Data- и Data Science-специалисты требуют ресурсов на исследовательскую составляющую проектов и большую толерантность в ошибках и неудачах, являющихся неотъемлемой частью их работы. При правильном использовании, Big Data дает широкий спектр возможностей для бизнеса сегодня и в будущем. Проблема заключается в нехватке квалифицированных специалистов и неравномерной выдаче результатов. Это только вопрос времени, когда Big Data станет важной частью принятия бизнес-решений. Если эти ошибки будут учтены, станет намного проще реализовать любую стратегию, связанную с Большими данными. Еще один способ увеличить шансы на успех – использовать правильные инструменты для правильного проекта.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Big data простым языком [litres]»

Представляем Вашему вниманию похожие книги на «Big data простым языком [litres]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Big data простым языком [litres]»

Обсуждение, отзывы о книге «Big data простым языком [litres]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x