Эндрю Макафи - Машина, платформа, толпа. Наше цифровое будущее

Здесь есть возможность читать онлайн «Эндрю Макафи - Машина, платформа, толпа. Наше цифровое будущее» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент МИФ без БК, Жанр: Прочая научная литература, economics, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Машина, платформа, толпа. Наше цифровое будущее: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Машина, платформа, толпа. Наше цифровое будущее»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В этой книге описывается, как в цифровую эпоху изменился баланс сил – баланс разума и машины, продуктов и платформ, ядра и толпы. По мере развития технологий расширяются и возможности человека. Понимание того, какие принципы и тренды стоят за современной цифровой революцией поможет каждому из нас проложить собственный путь в будущее. Эта книга для тех, кто интересуется технологиями, трендами, будущим. На русском языке публикуется впервые.

Машина, платформа, толпа. Наше цифровое будущее — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Машина, платформа, толпа. Наше цифровое будущее», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Соревнование на Topcoder продолжалось 14 дней. За это время 122 участника (отдельные люди или команды) как минимум по одному разу использовали свои алгоритмы для получения оценки, а многие сделали это по нескольку раз. Всего организаторы эксперимента зафиксировали 654 предложения. Состав участников был крайне неоднородным: они представляли 69 стран, а возраст колебался от 18 до 44 лет; большей частью они не обладали нужной квалификацией, по крайней мере в традиционном смысле. Приблизительно половина еще где-то училась, и, как указывали исследователи, «там не было теоретических или практических специалистов по вычислительной биологии, и всего пятеро сообщили, что занимаются какими-либо исследовательскими работами или имеют отношение к медико-биологическим наукам» [620].

Были ли все предложенные решения хорошими? Разумеется, нет. Большинство из них давали меньшую точность, чем MegaBLAST или idAb (хотя почти все были быстрее обоих этих алгоритмов). Тем не менее тридцать оказались точнее, чем MegaBLAST, а шестнадцать – точнее, чем idAb. Восемь предложений от толпы давали точность 80 процентов, которая, по оценке исследователей, была теоретическим максимумом для этого набора данных [621]. Те предложения, точность которых была как минимум не хуже, чем у idAb, работали в среднем 69 секунд, то есть в тридцать с лишним раз быстрее эталона. Три самых быстрых решения работали всего 16 секунд, то есть почти в 180 раз быстрее.

И еще одна важная деталь: общий призовой фонд конкурса составлял шесть тысяч долларов.

Что не так с экспертами?

Типичны эти результаты или необычны? Мы обратились с таким вопросом к Кариму Лахани, поскольку он считается ведущим специалистом в сфере соревнований, затрагивающих толпу, и провел множество исследований помимо того, что мы только что описали. Он сказал:

За последние пять лет мы поставили перед толпой более 700 проблем для NASA, медицинских институтов, компаний и других организаций, и только один раз потерпели неудачу, когда толпа не собралась и не решила задачу [622]. Во всех остальных случаях мы либо достигли уже существовавших результатов, либо значительно их превзошли [623].

Это кажется невероятным, не так ли? Ведь компании и организации вроде Национальных институтов здравоохранения или Beth Israel потратили огромное количество времени, средств и сил на создание ресурсов для инноваций и решения проблем, задействовав при этом научно-исследовательские лаборатории, научно-технический персонал, технические отделы и многие другие. Эти ресурсы, по сути, «ядро ядра». Так почему же толпа так легко превзошла их именно в тех задачах, с которыми они должны справляться?

Может быть, эксперты ядра на самом деле не так уж хороши? В конце концов, в главе 2 мы представили множество подтверждений того, что специалисты в определенной области, как и все люди, страдают от когнитивных искажений, которые ухудшают качество их работы. Может оказаться, что чем выше и известнее становятся люди в своих областях, тем сильнее проявляются слепые пятна – например, хорошо известные эффект сверхуверенности [624]и склонность к подтверждению своей точки зрения (фактическое рассмотрение только той информации, которая соответствует тому, что вы думаете); это должно вести к ухудшению результатов.

Может даже оказаться, что многие эксперты на самом деле вовсе не эксперты, что они обманывают себя и нас в отношении своих умений и качества работы. В сегодняшнем сложном, быстро меняющемся, технологически изощренном мире весьма трудно выделить тех, кто действительно знает, о чем говорит.

Несомненно, такие «недоэксперты» существуют, но мы не думаем, что в них кроется основная причина того, почему толпа часто показывает себя лучше ядра. Мы уверены, что подавляющее большинство нынешних ученых, инженеров, технических специалистов и других сотрудников организаций в самом деле имеют достаточную квалификацию для своей работы и заинтересованы в том, чтобы выполнять ее хорошо. Почему же толпа почти всегда их побеждает?

СЕРЬЕЗНОЕ НЕСООТВЕТСТВИЕ

У организаций много добродетелей, но часто они мешают сами себе, делая то, что неэффективно и что ухудшает их работу в области инноваций, НИОКР и практически во всех других областях. К сожалению, организационные кризисы – это реальность, а не только темы для бесчисленных мультфильмов «Дилберт» [625], и они мешают ядру работать так, как оно могло бы. Между тем более серьезная причина гораздо тоньше, чем простое нарушение функций: ядро часто не соответствует тем видам проблем и возможностей, с которыми оно сталкивается, в то время как с толпой такого не случается практически никогда в силу ее громадности. Но почему же ядро так часто бывает рассогласовано и разрегулировано? Разве научно-исследовательские лаборатории и технические отделы создаются не для того, чтобы соединять ресурсы, необходимые для решения поставленных задач? Это же не тот случай, когда лаборатория генетики нанимает по ошибке группу металлургов, а потом удивляется, что те не могут раскрыть тайны ДНК. Откуда такое частое рассогласование?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Машина, платформа, толпа. Наше цифровое будущее»

Представляем Вашему вниманию похожие книги на «Машина, платформа, толпа. Наше цифровое будущее» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Машина, платформа, толпа. Наше цифровое будущее»

Обсуждение, отзывы о книге «Машина, платформа, толпа. Наше цифровое будущее» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x