Алгоритмы.Резкое увеличение объема данных важно, поскольку поддерживает и ускоряет разработки в сфере искусственного интеллекта и машинного обучения, описанные в предыдущей главе. Алгоритмы и подходы, которые сейчас доминируют в этой области, например глубокое обучение или обучение с подкреплением, обладают общим свойством показывать всё лучшие результаты по мере увеличения объема поступающих данных. Работа большинства алгоритмов обычно сводится к асимптотическому уровню, когда добавление новых данных улучшает результат совсем чуть-чуть или вовсе на него не влияет. Однако, похоже, для многих широко использующихся сейчас подходов к машинному обучению это не так. Эндрю Ын сказал нам, что в случае с современными алгоритмами «закон Мура и некоторое количество очень умной технической работы позволяют изменить ситуацию» [246].
Сети.Очень быстро улучшаются технологии и протоколы беспроводной связи – как на коротких, так и на длинных расстояниях. Например, AT&T и Verizon объявили об испытаниях в 2016 году беспроводной технологии 5G со скоростью загрузки до 10 гигабит в секунду [247]. Это в пятьдесят раз быстрее, чем средняя скорость сетей LTE (самых быстрых из тех, что широко развернуты в настоящее время), а сама технология LTE вдесятеро быстрее предыдущего поколения – технологии 3G. Такое повышение скорости означает более качественное и быстрое накопление данных, а также подразумевает, что роботы и летающие дроны смогут постоянно быть на связи, координировать свою работу и совместно реагировать на быстро меняющиеся обстоятельства.
Облачные технологии.Для организаций и отдельных людей сейчас доступен беспрецедентный объем вычислительных мощностей. Через интернет можно арендовать на долгий срок или на несколько минут приложения, серверы различного уровня конфигурирования и объемы дискового пространства. Такая инфраструктура для облачных вычислений, существующая меньше десяти лет, ускоряет кембрийский взрыв в робототехнике по трем причинам.
Во-первых, она сильно снижает входной барьер, поскольку те виды компьютерных ресурсов, которые раньше имелись только в крупных исследовательских университетах и международных лабораториях, занимающихся НИОКР, теперь стали доступны для стартапов и изобретателей-одиночек.
Во-вторых, облако позволяет разработчикам роботов и дронов исследовать важный вопрос о распределении локальных и централизованных вычислений: какие задачи по обработке информации следует выполнять в локальном мозге каждого робота, а какие должен делать глобальный мозг, расположенный в облаке? Кажется вероятным, что самая ресурсоемкая работа, например воспроизведение предыдущего опыта для получения новых выводов, до какого-то времени будет выполняться в облаке.
В-третьих (и это, возможно, важнее всего), облако означает, что каждый участник группы роботов или дронов будет способен быстро узнать, что делают все другие участники. Прэтт замечает: «Люди учатся десятки лет, чтобы добавить что-то содержательное в совокупность общечеловеческого знания. Тем временем роботы в смысле обучения не просто стоят на плечах друг у друга [248], а способны начать делать вклад в совокупность “общероботового” знания сразу после своего создания» [249]. Один из первых примеров «коллективного разума» такого рода – это парк автомобилей Tesla, способных обмениваться данными о придорожных объектах, мимо которых они проезжают. Получение такой информации помогает со временем понять, какие объекты постоянны (те, мимо которых в одном и том же месте проезжает много разных автомобилей), и сделать вывод о крайне малой вероятности того, что они выбегут на середину дороги.
Экспоненциальное улучшение аппаратного обеспечения.В 2015 году закон Мура, который гласит, что производительность микросхем удваивается каждые 18–24 месяца [250], отпраздновал полувековой юбилей, и в это время он все еще был актуален. Недавно высказывались предположения, что разработчики столкнутся с проблемами физических ограничений, поэтому в ближайшие годы темпы удвоения замедлятся. Возможно, это и так, но, даже если ученые и инженеры, работающие в области информационных технологий, не сумеют выяснить в ближайшие десятилетия, как еще тоньше протравливать кремний, мы уверены, что еще долго будем радоваться тому, как снижаются цены и одновременно повышается производительность цифрового оборудования: процессоров, памяти, средств связи, запоминающих устройств и тому подобного.
Читать дальше
Конец ознакомительного отрывка
Купить книгу