Эндрю Макафи - Машина, платформа, толпа. Наше цифровое будущее

Здесь есть возможность читать онлайн «Эндрю Макафи - Машина, платформа, толпа. Наше цифровое будущее» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент МИФ без БК, Жанр: Прочая научная литература, economics, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Машина, платформа, толпа. Наше цифровое будущее: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Машина, платформа, толпа. Наше цифровое будущее»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В этой книге описывается, как в цифровую эпоху изменился баланс сил – баланс разума и машины, продуктов и платформ, ядра и толпы. По мере развития технологий расширяются и возможности человека. Понимание того, какие принципы и тренды стоят за современной цифровой революцией поможет каждому из нас проложить собственный путь в будущее. Эта книга для тех, кто интересуется технологиями, трендами, будущим. На русском языке публикуется впервые.

Машина, платформа, толпа. Наше цифровое будущее — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Машина, платформа, толпа. Наше цифровое будущее», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Мы поддерживаем идею о том, что человек должен участвовать в принятии решений, по тем причинам, что описали Мил и Дэвенпорт, но также выступаем за то, чтобы компании «следили за счетом» везде, где возможно. Им следует все время сравнивать эффективность решений компьютера и людей. Если блокирующие действия человека правильнее, чем поведение алгоритма по умолчанию, все идет хорошо. Если же дела обстоят не так, значит, нужно что-то менять, и первым делом стоит уведомить людей об их низком коэффициенте эффективности.

Обратная связь крайне важна, поскольку именно так обучается и улучшается Система 1. Вот что пишут Канеман и психолог Гэри Кляйн: «Вам не следует верить своему чутью. Нужно рассматривать его как важный ориентир, но всегда осознанно и обдуманно оценивать эти предположения, чтобы понять, имеют ли они смысл в данном контексте» [153]. Лучший способ сделать Систему 1 точнее и свести к минимуму ее искажения – показывать ей много примеров и давать обратную связь настолько быстро и часто, насколько это возможно.

ПЕРЕВЕРНИТЕ СТАНДАРТНОЕ ПАРТНЕРСТВО ДЛЯ БОЛЬШЕЙ ЯСНОСТИ

Самый современный метод принятия решений (его только начинают использовать некоторые компании) заключается в переворачивании обычного порядка с ног на голову: не машины предоставляют данные, чтобы человек на их основании принял решение, а суждение человека используется в качестве данных для работы компьютера. Компания Google стала пионером в применении такого метода к найму сотрудников. Это была важнейшая область для компании, поскольку обычный подход там давал плохие результаты.

Когда Ласло Бок был главой отдела по работе с персоналом в Google, он понял, что б о льшая часть методов, используемых для отбора новых сотрудников, бесполезна. Его команда стала думать, чем объясняется разница в фактической производительности людей, и обнаружила, что от предварительной проверки рекомендаций она зависит примерно на 7 процентов, от прошлого опыта – на 3 процента, а от результатов бессистемных собеседований, которые по-прежнему широко распространены и начинаются типичными вопросами «Каковы ваши сильные стороны?» и «Пройдемся по вашему резюме?» – всего на 14 процентов. Бок говорил, что проблема с этими собеседованиями состояла в следующем:

Сложилась ситуация, когда собеседования проводились для того, чтобы подтвердить наше мнение о людях, а не для их истинного оценивания. Психологи называют это предвзятостью подтверждения. На основании ничтожно малого взаимодействия мы неосознанно выносим скоропалительное суждение, на которое значительно влияют наши собственные предрассудки и убеждения. Не сознавая этого, мы переходим от оценивания кандидата к выискиванию подтверждений того, что он соответствует нашему первоначальному впечатлению [154].

В этом случае в действие снова вступает Система 1, которая вносит в принятие важного решения искажения и ошибки.

Итак, как лучше нанимать сотрудников? Компания Google стала в значительной степени опираться на структурированные, формализованные собеседования, которые объясняют более 25 процентов дальнейшей фактической производительности. Процедура состоит из набора заранее определенных вопросов, предназначенных для оценивания, например, общей когнитивной способности человека. Все люди, проводящие собеседования в Google, используют этот подход и в целом задают одни и те же вопросы. Как объяснял Бок, «в итоге мы получили собеседование с согласованными критериями… Интервьюер должен указывать, как действовал кандидат в том или ином случае, каждый уровень выполнения задания четко установлен… Такие четкие критерии… изменили прежде путаные, размытые и сложные процедуры, сведя их к ряду задач с измеримыми результатами» [155].

При таком подходе суждения отдельных людей, проводящих собеседование, по-прежнему остаются ценными, однако они оцениваются количественно и используются для того, чтобы присвоить кандидатам какие-то численные оценки. Бок считает, что этот подход не обезличивает собеседование, не превращает его в формальность, а наоборот. Люди, устраивающиеся на работу в Google, ценят то, что с ними обращаются объективно и справедливо (80 процентов отвергнутых кандидатов, которые прошли собеседование по новой форме, сказали, что они рекомендовали бы друзьям подать заявление в Google), а решения о найме стали проще. Как заметил Бок: «Это позволяет увидеть четкую границу между превосходным и средним уровнем» [156].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Машина, платформа, толпа. Наше цифровое будущее»

Представляем Вашему вниманию похожие книги на «Машина, платформа, толпа. Наше цифровое будущее» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Машина, платформа, толпа. Наше цифровое будущее»

Обсуждение, отзывы о книге «Машина, платформа, толпа. Наше цифровое будущее» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x