Эндрю Макафи - Машина, платформа, толпа. Наше цифровое будущее

Здесь есть возможность читать онлайн «Эндрю Макафи - Машина, платформа, толпа. Наше цифровое будущее» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент МИФ без БК, Жанр: Прочая научная литература, economics, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Машина, платформа, толпа. Наше цифровое будущее: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Машина, платформа, толпа. Наше цифровое будущее»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В этой книге описывается, как в цифровую эпоху изменился баланс сил – баланс разума и машины, продуктов и платформ, ядра и толпы. По мере развития технологий расширяются и возможности человека. Понимание того, какие принципы и тренды стоят за современной цифровой революцией поможет каждому из нас проложить собственный путь в будущее. Эта книга для тех, кто интересуется технологиями, трендами, будущим. На русском языке публикуется впервые.

Машина, платформа, толпа. Наше цифровое будущее — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Машина, платформа, толпа. Наше цифровое будущее», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

• Исследование Шая Данцигера и его коллег показало, что израильские судьи чаще предоставляют условно-досрочное освобождение в начале дня и после обеденного перерыва [109] Shai Danziger, Jonathan Levav, and Liora Avnaim-Pesso, “Extraneous Factors in Judicial Decisions,” PNAS 108, no. 17 (2010): 6889–92, http://www.pnas.org/content/108/17/6889.full.pdf . . А вот непосредственно перед обедом, когда они, вероятно, устали или у них снизился уровень сахара в крови, они чаще рекомендуют оставить заключенного в тюрьме. Другое исследование подтвердило, что на судебные решения часто влияют факторы, находящиеся за рамками рассматриваемого дела. Экономисты Озкан Эрен и Наджи Моджан выявили, что в одном штате США судьи, которые были выпускниками известного местного университета, выносили значительно более строгие приговоры сразу после того, как команда их альма-матер неожиданно проигрывала футбольный матч, и эти приговоры были необъяснимо более суровыми для чернокожих обвиняемых [110] Ozkan Eren and Naci Mocan, Emotional Judges and Unlucky Juveniles , NBER Working Paper 22611 (September 2016), http://www.nber.org/papers/w22611 . .

• В округе Броуард штата Флорида детей в программы для одаренных записывают обычно по рекомендациям родителей и учителей [111] David Card and Laura Giuliano, Can Universal Screening Increase the Representation of Low Income and Minority Students in Gifted Education? NBER Working Paper 21519 (September 2015), http://www.nber.org/papers/w21519.pdf . . При этом 56 процентов школьников в программах для одаренных – белые, хотя в Броуарде они составляют меньшинство. В первом десятилетии XXI века было принято решение отказаться от субъективного метода и попытаться применить максимально системный и объективный подход. Все дети прошли невербальный тест IQ. Экономисты Дэвид Кард и Лора Джулиано документально подтверждают поразительные результаты этой новации: среди одаренных оказалось на 80 процентов больше школьников-афроамериканцев и на 130 процентов больше испаноязычных.

• Профессора права Тед Ругер и Полин Ким совместно с политологами Эндрю Мартином и Кевином Куинном провели тест, чтобы проверить, может ли простая модель с шестью переменными предсказать решения Верховного суда США на 2002 год лучше, чем группа из восьмидесяти трех известных экспертов [112] Theodore W. Ruger et al., “The Supreme Court Forecasting Project: Legal and Political Science Approaches to Predicting Supreme Court Decisionmaking,” Columbia Law Review 104 (2004): 1150–1210, http://sites.lsa.umich.edu/admart/wp-content/uploads/sites/127/2014/08/columbia04.pdf . . Из привлеченных к эксперименту юристов 38 человек работали помощниками судей Верховного суда, 33 были профессорами права, а шестеро в настоящее время или в прошлом возглавляли юридические факультеты. В среднем представителям этой группы удалось предсказать чуть меньше 60 процентов судебных постановлений. Алгоритм же дал 75 процентов правильных результатов.

Является ли этот список репрезентативным и честным, или мы намеренно, а может, даже неосознанно выбрали случаи, когда человеческое суждение проигрывало алгоритму, оставив без внимания примеры превосходства человека? Впечатляющий объем исследований показывает, что статистика все же на нашей стороне.

Группа под руководством психолога Уильяма Гроува просмотрела литературу за пятьдесят лет в поисках опубликованных рецензируемых примеров прямых сравнений между клиническими и статистическими прогнозами (то есть сравнений оценок квалифицированных экспертов и прогнозов на основе компьютерного анализа данных) в сфере психологии и медицины [113] William M. Grove et al., “Clinical versus Mechanical Prediction: A Meta-analysis,” Psychological Assessment 12, no. 1 (2000): 19–30, http://zaldlab.psy.vanderbilt.edu/resources/wmg00pa.pdf . . Они нашли 136 таких исследований, которые охватывали всё – от тестирования IQ до диагностики сердечных заболеваний. В 48 процентах этих работ значимой разницы обнаружено не было – иными словами, эксперты в среднем угадывали правильный результат не лучше компьютера.

Гораздо более сильный удар по идее превосходства человека в оценочном суждении нанес тот факт, что в 46 процентах рассмотренных исследований эксперты действовали значительно хуже, чем алгоритм. Это означает, что люди продемонстрировали явное превосходство только в 6 процентах случаев. Авторы пришли к заключению, что почти во всех исследованиях, где люди оказывались лучше, «у специалистов было больше данных, чем у программы» [114] William M. Grove et al., “Clinical versus Mechanical Prediction: A Meta-analysis,” Psychological Assessment 12, no. 1 (2000): 19–30, http://zaldlab.psy.vanderbilt.edu/resources/wmg00pa.pdf . . Как заметил легендарный психолог Пол Мил, который еще в начале 1950-х годов описывал посредственные результаты суждений людей-экспертов:

В социальных науках не ведутся споры о том, что именно показывает настолько масштабный корпус появившихся недавно качественно разнообразных исследований, ведущихся в едином направлении, одним из которых является это [сравнение статистического и клинического прогнозов]. Когда у вас больше ста работ, прогнозирующих всё – от результатов футбольных матчей до диагностики заболеваний печени, – и при этом вы с трудом можете наскрести полдюжины исследований, где есть хотя бы слабый уклон в пользу клинического прогноза, самое время сделать некий практический вывод [115] Paul E. Meehl, “Causes and Effects of My Disturbing Little Book,” Journal of Personality Assessment 50, no. 3 (1986): 370–75, http://www.tandfonline.com/doi/abs/10.1207/s15327752jpa5003_6 . .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Машина, платформа, толпа. Наше цифровое будущее»

Представляем Вашему вниманию похожие книги на «Машина, платформа, толпа. Наше цифровое будущее» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Машина, платформа, толпа. Наше цифровое будущее»

Обсуждение, отзывы о книге «Машина, платформа, толпа. Наше цифровое будущее» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x