Эндрю Макафи - Машина, платформа, толпа. Наше цифровое будущее

Здесь есть возможность читать онлайн «Эндрю Макафи - Машина, платформа, толпа. Наше цифровое будущее» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент МИФ без БК, Жанр: Прочая научная литература, economics, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Машина, платформа, толпа. Наше цифровое будущее: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Машина, платформа, толпа. Наше цифровое будущее»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В этой книге описывается, как в цифровую эпоху изменился баланс сил – баланс разума и машины, продуктов и платформ, ядра и толпы. По мере развития технологий расширяются и возможности человека. Понимание того, какие принципы и тренды стоят за современной цифровой революцией поможет каждому из нас проложить собственный путь в будущее. Эта книга для тех, кто интересуется технологиями, трендами, будущим. На русском языке публикуется впервые.

Машина, платформа, толпа. Наше цифровое будущее — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Машина, платформа, толпа. Наше цифровое будущее», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Лучшие компании такого рода добились впечатляющих результатов. В управлении D. E. Shaw в октябре 2016 года находилось свыше 40 миллиардов долларов [663], а ее Composite Fund за десятилетие перед 2011-м обеспечивал годовую доходность в 12 процентов [664]. Компания Two Sigma, созданная бывшим специалистом по искусственному интеллекту и участником математических олимпиад Джоном Овердеком, управляет 6-миллиардным Compass Fund, который в течение десятилетия обеспечивал годовую доходность 15 процентов [665]. Доходность почти всех фондов затмевается характеристиками Medallion Fund, существующего внутри Renaissance и открытого почти исключительно для ее работников. В течение двадцати с лишним лет после своего появления в середине 1990-х годов он обеспечивал средний годовой доход, превышающий 70 процентов (до вычетов) [666]. За время существования он принес более 55 миллиардов прибыли и на сайте Bloomberg был назван «вероятно, величайшей в мире машиной по зарабатыванию денег» [667].

Джон Фосетт, программист и предприниматель, который занимался финансовыми услугами, был впечатлен успехами количественного анализа, но его беспокоило, что в ядре инвестиционной отрасли анализ используется недостаточно. По оценкам Фосетта, к 2010 году в мире имелось всего от трех до пяти тысяч профессиональных инвесторов, использующих статистический анализ. Он рассказывал нам: «Мне эти числа казались слишком малыми. Меня беспокоило, что [у многих инвесторов] нет достаточного доступа к тому, что я считал современной практикой инвестиций. В какой области вы поставили бы на людей, действующих самостоятельно, а не на комбинацию человека и машины? В каждом конкретном случае вы предпочтете более автоматизированную версию» [668].

Фосетт увлекся идеей открыть количественное инвестирование для толпы и для этого в 2011 году вместе с Жаном Бредашем основал компанию Quantopian. Она столкнулась с пугающей задачей создания технологической платформы для статистического анализа, сравнимой с теми, что имеются у ведущих компаний отрасли. Такая платформа должна была давать инвесторам возможность загружать собственные алгоритмы, затем быстро тестировать их в различных рыночных условиях: подъемах и спадах деловой активности, периодах высоких и низких процентных ставок и прочем. Для это требовалась проверка алгоритмов на исторических данных. Фосетт и его коллеги стремились к тому, чтобы их тестирование так же надежно давало результаты, как аналоги у институциональных инвесторов.

Кроме того, стартап должен был давать инвесторам возможность точно оценивать влияние их торгов на рынок, чтобы понять, как покупка или продажа какого-либо актива высокой стоимости меняет его рыночную цену. Определение влияния на рынок – сложное упражнение, и оно требует немало времени. Разумеется, платформа также должна автоматически осуществлять сделки, сгенерированные алгоритмами, вести документацию, следить за соблюдением соответствующих нормативов и так далее.

Фосетт знал, что если Quantopian сумеет создать надежную платформу, а в перспективе и «алгоритмических трейдеров» для нее, компания получит важное преимущество: она сможет пользоваться хорошими идеями, которые генерирует толпа, а не одиночки. Нередко попытки привлечь толпу характеризуются стремлением найти единственное решение – наилучший проект машины для льда или наилучший алгоритм для секвенирования генома лейкоцитов. Предложения, занявшие на таких соревнованиях второе или третье место, могут быть почти так же хороши, как и победитель, однако для устроителя этот факт часто не имеет значения.

Инвестиционные алгоритмы – дело другое. Если лучшие из них отличаются друг от друга (не являются простыми копиями лидера), их можно продуктивно комбинировать, чтобы обеспечить более высокий доход для инвесторов, чем в случае использования одного алгоритма, независимо от того, насколько он хорош. Идея о том, что важно скомпоновать оптимальный инвестиционный портфель, была такой значимой, что принесла ее автору Гарри Марковицу Нобелевскую премию по экономике. Она также идеально подходит для сред на базе толпы, которые могут генерировать множество хорошо работающих, но различных алгоритмов количественного инвестирования. Фосетт сказал нам: «Я очерчиваю проблему для Quantopian таким образом: “Как мы максимизируем вероятность обнаружения множества стратегий с низкой корреляцией и хорошей структурой?”» [669], [670]

Один из способов – иметь массу людей, которые будут придумывать и предлагать стратегии количественных инвестиций. К середине 2016 года Quantopian привлекла к своей платформе более 100 тысяч перспективных трейдеров из 180 стран и рассмотрела свыше 400 тысяч алгоритмов [671]. Кто эти трейдеры? Согласно Фосетту, «общим для них часто является либо наличие степени бакалавра или более высокой, либо многолетний опыт в области, где им приходилось строить модели. Скажем, это астрофизики или специалисты по вычислительной гидродинамике. В целом они новички в финансах; возможно, работают в области рекламных технологий или нефтегазовой отрасли. У нас есть учащиеся и профессионалы. Мне кажется, что возрастной диапазон – от студентов до двух совместно работающих братьев-пенсионеров, которые ранее были весьма успешными учеными» [672].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Машина, платформа, толпа. Наше цифровое будущее»

Представляем Вашему вниманию похожие книги на «Машина, платформа, толпа. Наше цифровое будущее» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Машина, платформа, толпа. Наше цифровое будущее»

Обсуждение, отзывы о книге «Машина, платформа, толпа. Наше цифровое будущее» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x