В [38] рассмотрено использование микроволнового нагрева в гетерогенном газофазном катализе в реакциях окислительного соединения метана, окисления монооксида углерода. Проведение этой реакции с обычным нагревом, как правило, приводит к конверсии метана 10-15 % при избирательности 80-85 %. Первое сообщение о применении микроволнового нагрева в этой реакции сделал Bond со своими коллегами с использованием катализатора алюмината натрия [71]. Было подтверждено, что при микроволновом нагреве, используемом вместо обычного нагрева, образование CО 2происходит при температуре ниже почти на 125 °C с высокой избирательностью. Roussi и др. также показали увеличение избирательности в высшие УВ на обработанных МВИ катализаторах при окислительном соединении метана [72].
Исследования сокращения выбросов NO x,проведенные с применением медных и никелевых катализаторов [73], а также с Pt/Al 2O 3катализатором [74], показали увеличение активности при микроволновом нагревании. Интересные результаты показали Zhang и Tang; ими было проведено прямое разложение на легированном металле с цеолитами [75].
В работах [76-80] по использованию микроволн для очистки выхлопных газов показано, что микроволновая обработка катализатора, используемого для снижения выбросов автомобилей сразу после запуска двигателя, весьма эффективна, отмечена возможность перехода на аномально низкие температуры.
В работе [81] представлены результаты исследований воздействия МВИ с частотами 3,4 и 2,45 ГГц на углеродные носители катализаторов различной природы и сажу, образовавшуюся в результате работы дизельного двигателя. Показано, что частицы углеродсодержащей сажи, отобранные из выхлопа дизельного двигателя и нанесенные на керамику, которая прозрачна для МВИ, интенсивно поглощают излучение.
В работе [82] в качестве альтернативы традиционным методам нагрева и отверждения использовали метод отверждения под действием высокочастотного (ВЧ) электрического поля. Метод ВЧ нагрева полимерных материалов основан на том, что полярные группы и сегменты молекул диэлектрического материала, помещенного в переменное электрическое поле, ориентируются вместе с изменением его полярности. Другие группы и молекулы, а также тепловое движение препятствуют ориентации. Энергия, которая затрачивается на преодоление препятствий, рассеивается в материале и нагревает его. Интенсивность нагрева повышается с увеличением частоты колебаний и напряженности электрического поля. Преимущество ВЧ нагрева состоит в том, что прогрев происходит во всем объеме одновременно, а степень нагрева может регулироваться с высокой точностью [83]. В научно-технической литературе представлены достаточно глубокие исследования особенностей процессов отверждения эпоксидных композиций под действием МВИ. Наиболее серьезные работы проведены с использованием в качестве сшивающих агентов 4,4-диаминдифенилметана, 4,4-диаминодифенилсульфона, мфенилендиамина и т.д. [84]. При этом мощность излучения изменялась в пределах 20-100 Вт, а частота импульсов от 20 Гц до 20 кГц. Установлено, что микроволновое отверждение происходит аналогично термическому отверждению, при этом использование импульсного излучения повышает эффективность сшивания. Поглощаемая мощность в ходе отверждения сначала возрастает, а потом уменьшается, что объясняется подавлением процесса биполярной релаксации образующимися межмолекулярными сшивками.
В работе [85] для интенсификации процессов полимеризации впервые использовано в качестве нагрева МВИ и получены полимеры СТ и 2-,4-винилпиридинов. Для микроволнового нагрева полимеризационной массы использовалась система «Discover LabMate» (СEM Corporation, США). При синтезе мощность МВИ составляла 300 Вт, частота 2450 МГц. После микроволнового синтеза выделение и анализ полимеров проводились аналогично полимерам, полученным с использованием термического нагрева. С целью установления закономерностей влияния МВИ на протекание процессов радикальной полимеризации и свойства получаемых гомополимеров и сополимеров в условиях, идентичных традиционным методам, в поле СВЧ были получены гомополимеры 2-,4-винилпиридинов, СТ и их сополимеры различного состава. В условиях микроволнового нагрева полистирол получается практически с тем же самым выходом, но за более короткое время. В то же время замена термического нагрева на микроволновый приводит к увеличению степени конверсии мономера и существенному повышению молекулярной массы полимера, особенно при использовании в качестве инициатора динитрила азобисизомасляной кислоты (ДАК). МВИ оказывает более эффективное воздействие на процессы полимеризации более полярных мономеров. На процесс сополимеризации 4-винилпиридина со СТ МВИ также оказывает значительное влияние. Полученные данные свидетельствуют об интенсификации процесса при замене термического нагрева на микроволновый, что позволяет снизить время сополимеризации в два раза. Однако при получении сополимеров с использованием МВИ существенное влияние на их молекулярно-массовые характеристики оказывает используемый инициатор. При получении сополимеров 4винилпиридина со СТ в условиях микроволнового синтеза с использованием ДАК в качестве инициатора процесса полимеризации молекулярные массы полученных продуктов практически не изменяются по сравнению с аналогичными образцами, полученными в условиях термического нагрева. В то время как при использовании в качестве инициатора пероксида бензоила с применением МВИ молекулярные массы полимеров возрастают в 1,1-2,1 раза. Таким образом, использование МВИ в сочетании с различными инициаторами процесса сополимеризации позволяет изменить молекулярно-массовые характеристики и состав получаемого сополимера, что дает возможность целенаправленно синтезировать полимеры-носители.
Читать дальше
Конец ознакомительного отрывка
Купить книгу