Следующим этапом развития процессов дегидрирования можно считать успешный пуск в октябре 2003 г. на ОАО «Салаватнефтеоргсинтез» производства СТ мощностью 200 тыс. т/г вакуумным дегидрированием [29]. Технология была разработана российскими учеными под руководством Г.Р. Котельникова. Низкое соотношение [водяной пар]: [ЭБ] (менее 2,0:1 по массе) и высокий уровень конверсии ЭБ (до 70 %) обеспечивают низкие эксплуатационные затраты энергосредств, а высокие показатели селективности по СТ (до 95 % в промышленных условиях), обеспечивают низкий расход исходного сырья на производимый СТ.
Однако расчет равновесных выходов СТ при дегидрировании ЭБ при разных температурах и степенях разбавления водяным паром показывает, что теоретически возможно достижение 80-90 % выхода СТ [30]. Во всех вышеизложенных методах не был достигнут термодинамический максимум. Резерв составляет около 10 %.
Успешное внедрение вакуумного дегидрирования в промышленности означает начало перехода процессов нефтехимии на новый уровень, т.к. основные процессы, такие, как пиролиз, каталитический крекинг, дегидрирование парафиновых углеводородов (УВ), протекают с увеличением объема, и проведение этих процессов под вакуумом позволит значительно увеличить выход целевых продуктов. Единственная проблема подобных технологий – высокая стоимость компрессоров и сложности, связанные с их эксплуатацией.
Однако существуют попытки и другого подхода решения этой проблемы, заключающегося в использовании внешних физических полей в качестве дополнительного источника энергии.
1.2 Повышение эффективности процессов воздействием физических полей
По мере развития физики высоких энергий возникли подходы, подразумевающие передачу энергии либо катализатору с целью подвода тепла реакции [31], либо продуцирование ионов, радикалов или других активных частиц, которые могли бы быть инициаторами [32], либо структурные изменения реагентов, отличные от традиционных [33]. Вполне объективно, что родилась область химии, которая исследует протекание химических реакций под воздействием физических и механических полей.
Первоначально это были работы группы ученых под руководством К.С. Минскера, связанные с турбулизацией потоков, когда ускорялись массообменные процессы и, следовательно, увеличивались выходы продуктов [34]. Ими предложен аппарат типа инжектора, в цилиндрической части которого происходило смешение одного или двух потоков реагентов на огромной скорости. Такое смешение приводило к сильному ускорению реакции. Однако подобные конструкции трудноосуществимы для аппаратов большой единичной мощности, что побудило исследователей обратиться к воздействию электрических, магнитных, электромагнитных полей (ЭМП) сверхвысоких частот (СВЧ), плазмы, акустики (Ак) [35, 36]. Так возникло новое направление химии, основанное на ускорении химических процессов, а в науке и практике утвердились методы воздействия на химизм реакций и способы интенсификации. Из них наиболее прочное место удерживают плазмо-, звукохимия, МВИ, кавитация, воздействие магнитными и ЭМП.
По нашему мнению, наиболее предпочтительно из этих путей использование МВИ и Ак, т.к. вырисовываются конструкции промышленных аппаратов. Поэтому в своих исследованиях мы решили изучить возможность применения МВИ и Ак для интенсификации химических процессов на примере дегидрирования ЭБ.
1.2.1 Применение микроволнового излучения в химии и химической технологии
МВИ или СВЧ излучением, или дециметровыми, сантиметровыми, миллиметровыми волнами называют электромагнитное излучение (ЭМИ) с частотой приблизительно от 300 МГц до 300 ГГц или длиной волны от нескольких миллиметров до нескольких метров. МВИ используется в телекоммуникационной связи, а также в радиолокации. Международным соглашением для лабораторных и бытовых микроволновых печей выделены частоты 2450 МГц (λ = 12,2 см) и 915 МГц (λ=32,7 см) [37, 38].
В органической химии МВИ начало применяться сравнительно недавно. Первая новаторская публикация – малоизвестный патент Bhargava Naresh’а (BASF, Канада), связанный с использованием микроволновой энергии для получения сложноэфирного пластификатора, появилась в 1981 г. Затем в 1986 г. появились две известные статьи исследовательских групп R. Gedye и R. Giguere. Авторами описаны некоторые реакции, завершающиеся в течение нескольких минут, которые проводились в герметичной посуде (стекло или тефлон) в микроволновых печах.
Читать дальше
Конец ознакомительного отрывка
Купить книгу