Но и сами они, опекуны-регуляторы, наделены далеко не полной свободой действий: их корректирующие усилия тоже ограниченны. Так, мощность двигателя имеет свой потолок, руль ракеты поворачивается не на любой угол, а лишь до упора или до какого-то иного предела.
Эти жесткие рамки поведения в математике выражаются неравенствами: переменная величина, принимая разные значения, всегда остается меньше самого верхнего из них и одновременно больше самого нижнего. Порой ей разрешено достигать их, но никак не превосходить — неравенство дополняется равенствами для одной или обеих крайних точек разрешенного интервала, а математические трудности от этого только усугубляются.
Подобными ограничениями классическое вариационное исчисление не занималось и не интересовалось, так что оно оказалось совершенно беспомощным перед новыми проблемами, поставленными эпохой автоматизации. Взяв его методы на вооружение, теория оптимального управления вынуждена была прибегнуть к их радикальной модернизации.
Устаревший арсенал пополнился мощной математической техникой: это прежде всего понтрягинский принцип максимума и беллмановское динамическое программирование. Оба они сводят расчет оптимального управления к вариационной задаче о максимуме или минимуме какого-то главного показателя, характеризующего эффективность процесса (например, суточная производительность промышленного агрегата, запас топлива или промежуток времени, необходимый для того, чтобы вывести спутник на орбиту). Любой основной критерий зависит от регулирующих воздействий.
Его взаимосвязь с ними описывается формулой, куда входят также регулируемые параметры системы.
Эта-то функция и исследуется по всем правилам специальной математической процедуры при обязательном условии: найденный результат должен полностью удовлетворять тому самому набору неравенств, которыми учтены ограничения, наложенные на рассматриваемые факторы. Принцип максимума, подразумевающий использование обыкновенных дифференциальных уравнений, требует почти вдесятеро меньше вычислений, чем динамическое программирование, которое оперирует уравнениями в частных производных (их решение гораздо сложнее). Вот почему метод Понтрягина признан более совершенным. Неспроста сами американцы именно этим способом делают расчеты при выводе спутников на орбиту.
В 1962 году академик Л. С. Понтрягин и его сотрудники — доктора физико-математических наук В. Г. Болтянский, Р. В. Гамкрелидзе, Е. Ф. Мищенко — за совместный вклад в теорию оптимальных процессов и автоматического регулирования разделили честь называться лауреатами Ленинской премии.
Это крупное достижение советской математики не столько увенчало собой большой труд маленького коллектива, сколько послужило отправным пунктом для дальнейших плодотворных изысканий в том же направлении. По следам москвичей устремились киевляне. В Институте кибернетики АН УССР разработан новый способ решения вариационных задач, синтезировавший идеи Понтрягина и Беллмана.
Он позволил подготовить стандартные программы, по которым электронные проектировщики успешно выбирают оптимальные трассы для транспортных, энергетических и газовых магистралей.
Так. прогресс математики и кибернетики расширяет возможности счетной техники, увеличивает эффективность ее использования. Впрочем, содействие здесь обоюдное: машина платит сторицей, помогая математике, кибернетике и другим наукам.
Успехи и неудачи «электронного мозга» дали мощный импульс мозгу живому: познай самого себя.
Что есть мысль и чувство? Где грань между роботом и творцом? Проникновение в тайны своего естества вручит человеку ключи к самоуправлению и самосовершенствованию.
Человек и машина… Практические выгоды такого союза очевидны.
«Одна из великих проблем, с которой мы неизбежно столкнемся в будущем, — проблема взаимоотношения человека и машины, проблема правильного распределения функций между ними, — писал Норберт Винер в своей последней книге „Творец и робот“. — Человеку — человеческое, машине — машинное. В этом и должна, по-видимому, заключаться разумная линия поведения при организации совместных действий людей и машин. В наше время мы остро нуждаемся в изучении систем, включающих и биологические и механические элементы… Одна из областей, где можно использовать такие смешанные системы, — это создание протезов, заменяющих собой конечности или поврежденные органы чувств.
Читать дальше