Между тем встречаются и нелинейные зависимости. Они хорошо знакомы оптикам и радиофизикам.
Или вот простой пример из колхозной жизни: время ожидания в очереди, выстроившейся к элеватору, обратно пропорционально количеству пунктов для приема зерна (такая функция изображается кривой — гиперболой).
Состояние системы нередко меняется с течением времени: возьмите летящую ракету, технологический процесс, шахматную партию, военную кампанию. Да и сельскохозяйственное или промышленное производство имеет свою динамику — его показатели в следующем году иные, чем в предшествующем. Здесь применимы другие подходы. Один из них — динамическое программирование. Его основы заложены американцем Р. Беллманом.
По схеме Беллмана задача предварительно членится на ряд последовательных шагов: в играх это ходы, в работе предприятий — квартальные или годовые планы. Оптимальное решение отыскивается для каждого этапа отдельно, но не близоруко («будь что будет, лишь бы сейчас было хорошо»), а с учетом всей цепочки дальнейших мероприятий. Любая тактическая операция допускает временные потери во имя окончательного стратегического успеха.
Следует, однако, оговориться, что линейное программирование тоже допускает многошаговый анализ, так что оно приложимо и к некоторым динамическим задачам (перспективное хозяйственное планирование, выработка оптимальной стратегии в конфликтных ситуациях, скажем, в сражении — при артобстреле, бомбардировке и так далее).
В наши дни теория оптимального планирования и управления бурно прогрессирует. Родившаяся совсем недавно, она успела богато приумножить доставшееся ей наследие — аппарат классического вариационного исчисления. Создатели его тоже занимались задачами на минимум и максимум, но главным образом в академическом плане (допустим: найти систему линий наименьшей протяженности между несколькими пунктами — это похоже на поиск рациональной транспортной сети). В современном вариационном исчислении, а оно нашло широкое применение в механике, оптике, электродинамике, важные результаты принадлежат М. А. Лаврентьеву, Н. Н. Боголюбову, Н. М. Крылову, Л. А. Люстернику и другим советским ученым.
Новые блестящие страницы в эту главу математики вписаны за последние годы Л. С. Понтрягиным и его учениками. Речь идет о знаменитом «принципе максимума». Он стал теоретической опорой в практике оптимального управления.
Нынешняя технология имеет дело со сложными процессами и агрегатами. Нелегко найти для них наиболее правильную линию поведения, которая обеспечила бы максимальную их эффективность. Вот, к примеру, синтез аммиака. Его ведут при сотнях градусов, ускоряя тем самым превращение исходных веществ в конечный продукт. Только вот беда: нагревание стимулирует и обратную реакцию — разложение аммиака на водород и азот. А это явно нежелательно. Понизить температуру? Нельзя: взаимодействие будет слишком вялым. Чтобы непрерывно подбадривать его без ущерба для производительности, давление поднимают до тысячи с лишним атмосфер.
А если и того пуще? Да, но тогда придется увеличить затрату электроэнергии, чтобы быстрее вращать моторы компрессоров. Себестоимость продукта незамедлительно поползет вверх. Кроме того, если подать особенно мощный напор, тем паче резко, рывком, то, чего доброго, нарушится герметичность труб или самой камеры. Так недолго и до аварии.
Чрезмерная интенсификация процесса не лучше недогрузки, ибо сопряжена с преждевременным износом установок, с возросшими эксплуатационными расходами, причем ей отнюдь не всегда сопутствует увеличение продуктивности, по крайней мере заметное и оправданное.
Ограничения, ограничения, ограничения — на каждом шагу ограничения. Тем не менее можно и нужно найти среди множества вариантов «золотую середину» («ауреа медиокритас», как говорил Гораций), такое сочетание технологических параметров, которое будет наиболее целесообразным в допустимых пределах, — оптимальный режим. И не только найти его, а. поддерживать сколь угодно долго, разумно меняя тактику по ходу дела. Эту проблему призвано решить оптимальное управление. Иногда оно напоминает балансирование на канате: малейшее отклонение в сторону рискованно, ибо грозит потерями — либо из-за нежелательной перегрузки оборудования, либо из-за недоиспользования его резервов. Такие «шатания» нередко обусловлены всякого рода случайностями, неравномерностями, которым подвержена работа любого технического объекта — будь то реактор, самолет или ракета. Умные приборы должны незамедлительно помочь оступившейся системе, снова направить ее на путь истинный.
Читать дальше