— Но как же нам быть с квадратами? Как обозначить, что наш герой сначала был глупым, а потом поумнел? Нам для этого нужен один квадрат или оба?
Если дети ответят, что один, надо сразу убрать один из квадратов и показать, что тогда происходило в сказке:
— Ты говоришь, что надо оставить только белый квадрат, потому что старик, в конце концов, перехитрил богатого мужика? Но тогда вот что получается: старик был умным-разумным, впросак не попадал, никто его не обманывал.
— А ты предлагаешь оставить только черный квадрат? Но это будет означать, что старик так и не поумнел и так и остался без подарков.
Дети после этих вопросов еще раз обнаружат, что обозначение — это ответственный процесс, процесс понимания, что по обозначениям можно увидеть, как человек сказку понимает.
Диалектическое преобразование.
Педагог поддерживает версию о том, что стоит оставить два квадрата.
— Значит, оставить один квадратик нельзя. Оставляем два. А как бы вы прочитали схему — что тут написано?
Хорошо, если дети скажут, что старик превратился из глупого в умного. Если не скажут, это слово может произнести и воспитатель.
— Видите, как интересно получается: был глупым, а потом превратился в умного. Но посмотрим по нашим квадратикам, непонятно, что это превращение произошло: как будто это про разных людей — кто-то умный, а кто-то глупый. А у нас ведь один и тот же старик — был глупым, да поумнел. Как же нам на схеме это показать?
Если идея стрелки придет детям в голову — отлично, если нет — ее предлагает педагог.
— Так что обозначает эта схема? Кто может ее прочитать? Здесь зашифровано превращение.
С названиями умственных действий детей знакомить не надо, однако слово «превращение» для них привычно (именно потому что превращение — самая обычная из необычных вещей, которые происходят в жизни и сказках).
Провокационный вопрос.
Этот вопрос можно задать в конце, чтобы проверить, насколько детям удалось решить задачу, а не просто действовать по образцу.
— А может быть все же стоит обозначить старика только белым квадратом?
То, как дети будут отвечать на этот вопрос, и будет знаком самостоятельности решения задачи.
Педагог обязательно подводит итог, предложив ребятам:
— Смотрите, у нас получилась такая схема. Придут ваши мамы и папы вечером за вами и удивятся: «Что это за квадратики? Что они обозначают?» Они-то не умеют схемы «читать», а кто из вас может «прочитать» схему?
Хорошо, если кто-то из детей расшифрует схему так: старик в сказке сначала был глупым, а потом поумнел.
4. Решаем диалектическую задачу с помощью диалектической схемы замыкания
Цель.Решение проблемно-противоречивой ситуации с помощью диалектической схемы замыкания.
Материалы.Картинки с изображением журавля, старика, скатерти, баранчика и сумы; по три черных и белых квадрата; вырезанные из бумаги стрелки.
Диалектическая задача:не лучше ли было бы обойтись без такого странного подарка, как сума?
«Формально-логическая ловушка»: сказка заканчивается хорошо, но это никак не связано с тем, что сума причинила герою страдания.
Методика проведения
В сказке ведется речь о трех подарках. Проблемная ситуация заключается в том, что сначала дети оценивают каждый подарок безотносительно ко всему содержанию сказки; поэтому именно первые два подарка кажутся безусловно ценными: скатерть дает еду, а баранчик деньги. А вот ценность сумы далеко не так очевидна: чтобы ее понять, надо обнаружить диалектическое действие замыкания. Именно на это направлено данное занятие.
Педагог начинает беседу:
— Давайте вспомним, какие подарки журавль подарил старику?
На доске прикрепляются три картинки с изображениями подарков на небольшом расстоянии друг от друга. Педагог спрашивает у детей:
— А какие подарки вам нравятся больше всего?
Очень вероятно, что дети позитивно отзовутся о первых двух подарках. Тут их стоит поддержать:
— Действительно, сорок из сумы старика побили, вряд ли кому такое понравится!
Диалектическая задача.
— Ребята, как вы думаете, может, лучше бы в сказке обойтись без такого странного подарка, как сума? Все ж она принесла много огорчений!
Все детские версии надо выслушать, выделив контрастные варианты и подчеркнув, что прозвучали противоположные ответы. Если дети сами противоположности не выстраивают, а высказываются однозначно, надо им помочь — возразить. После этого можно переходить к решению задачи при помощи схемы.
Читать дальше
Конец ознакомительного отрывка
Купить книгу