Например, если s – синий квадрат, p – синий, b – квадрат, с – красный, a – красный квадрат, то «множество квадратов м = {красный квадрат, синий квадрат | быть квадратом}», «красный квадрат = {квадрат, красный}», «синий квадрат = {квадрат, синий}» (смотри рис. 1)
Семантическое целое имеет вид ориентированного (направленного) графа. Считается, что отношение симметричности не свойственно направленному графу. Но это верно лишь для случая, если рассматривать только вершины (состояния) и не учитывать «содержание» направленности ребер. … Пару (семантическое целое, части семантического целого) вполне можно рассматривать как симметричное отношение. Об этом следующие три статьи, которые были написаны ранее и в разное время – об отношении тождества как таковом (смотри рис. 2)
1.3. Образ = операнд, если оператор
Если из операнда при воздействии на него оператора следует только образ и ничто иное, то образ – то же самое, что операнд, при воздействии на операнд оператора.
Здесь и далее понятия образ, операнд и оператор соответствуют трактовке Эшби, а именно [2]:
«Итак, нечто (бледная кожа) подвержена действию некоторого фактора (солнечных лучей) и превращается в темную кожу. То, что испытывает действие (бледную кожу), мы будем называть операндом; действующий фактор будем называть оператором; а то, во что превращается операнд, будем называть образом».
Темная кожа – это бледная кожа, если на бледную кожу действуют солнечные лучи. Если же в этом предложении опустить оператор, то о равенстве не может быть и речи. Сам Эшби хоть и упоминает о тождестве, но лишь применительно к рефлексии [2]:
«Важным преобразованием, которое, впрочем, начинающий может не признать за преобразование является тождественное преобразование. При этом преобразовании не происходит никаких изменений, и каждый образ совпадает со своим операндом».
Здесь же важно то, что в общем случае образ не равен операнду, и то, что соблюдается симметричность: «образ = операнд, если оператор» и «операнд, если оператор = образ». … Это же и математическим языком для пары (Y, F(X)), где оператор соответствует понятию функции F, образ – значению Y, а операнд – аргументу X: «образ = оператор(операнд)» влечет выполнение отношения «оператор(операнд) = образ». Ввиду важности подчеркну еще раз: отношение тождества выполняется для пары (Y, F(X)), а не для пары (Y, X)!
Другими словами, если из В при условии С следует только А и ничто иное, то «А = В, если С» или «А = С(В)». Если же определено еще, например, «В = D, если H», то «А = (D, если H), если С» или А = С(H(D))».
Даже для случая синонимии, когда Синоним1 и Синоним2 обозначают один и тот предмет или знак, говорить об их тождестве не приходится. Они будут тождественны только при условии, если Синоним2, например, преобразовать в Синоним1 (или наоборот): Синоним1 = преобразовать_в_Синоним1(Синоним2)
Рассмотрим известный пример [3]: «быть братом – то же самое, что быть сиблингом мужского пола». Быть братом – не то же самое, что быть мужского пола. Но быть братом (образ) – то же самое, что быть мужского пола (операнд), если у родителей есть еще дети (оператор). Быть братом не близнецом (образ) – то же самое, что быть мужского пола (операнд), если у родителей есть еще дети и если ни один из них не является с ним одновременно рожденным (оператор).
Аналогично и с химерами Рассела [4]. Химера – не то же самое, что животное. Химера – не то же самое, что дышать огнем. Но химера (образ) – то же самое, что животное (операнд), если дышать огнем (оператор).
С этих же позиций рассмотрим и парадокс лжеца: следующее высказывание истинно, предыдущее высказывание ложно (Платон: «Сократ лжет». Сократ: «Платон не лжет»). Если истинно, что высказывание ложно, то оно ложно. Если ложно, что высказывание ложно, то оно истинно. Или что то же и другими словами: утверждение (образ) – это отрицание (операнд), если отрицается (оператор) отрицание (операнд); отрицание (образ) – это утверждение (операнд), если отрицается (оператор) утверждение (операнд).
Итак, парадокс лжеца ведет себя как замкнутое однозначное преобразование, где «нет» как оператор – не то же самое, что «нет» как операнд или образ (смотри табл. 1):
Таблица 1
В логике предикатов принято описывать связь типа [5]: «Мама есть женщина» или, схематически, «a есть F» («a is an F»), где «a» обозначает единичный термин, а «F» – общий, соединяя общий термин с единичным (предикация). Но общее не равно единичному! Мама – не то же самое, что женщина. Мама (образ) то же самое, что женщина (операнд), если родила/воспитывает ребенка (оператор).
Читать дальше
Конец ознакомительного отрывка
Купить книгу