Владимир Булыгин - В сути вещей

Здесь есть возможность читать онлайн «Владимир Булыгин - В сути вещей» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

В сути вещей: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «В сути вещей»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Стоит ли думать об основах математики не математику? А математику о философии? Или физику о биологии?
Книга «В сути вещей» утвердительно отвечает на этот вопрос. В оригинальной форме автор соединяет математику с философией, кибернетику с физикой, биологию с лингвистикой, логикой и семантикой. Раскрытие сложных идей естественных наук на понятном неподготовленному читателю уровне с использованием ясных примеров, опирающихся на разные области знаний. Язык книги доступен не только специалисту, но и любому мыслящему читателю, стремящемуся обогатить свой внутренний мир знаниями и размышлениями, почувствовать дополнительный толчок для формирования нестандартного и просто мышления.
В главах: «Тождество», «Число», «Жизнь», «Мышление» читатель оказывается «по ту сторону» ныне принятой логики.
В книге раскрываются темы отождествления, отношения отношений, части и целого, парадокса лжеца, обучение по ассоциации, механизм образования слова и многое другое для думающего человека.

В сути вещей — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «В сути вещей», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

«В философии решающий удар аристотелевской логике нанес Гегель. Он показал своей диалектикой, что мир надо рассматривать не как совокупность объектов, обладающих некоторыми свойствами, а как совокупность объектов, находящихся в некоторых отношениях друг к другу. При этом свойства не исключаются, конечно, из рассмотрения, ибо понятие отношения является более общим, чем понятие свойства. Отношение может быть определено для произвольного числа объектов. В частности, число объектов может быть равно единице; такое отношение и есть свойство».

И там же, … но от себя бы еще добавил, что и нынешние математики в своем большинстве живут в до Декартовской (Гегелевской) эпохе [1]:

«Но, если даже предположить, что греческие математики школы Платона познакомились бы с арифметической буквенной символикой, трудно представить, чтобы они воспроизвели научный подвиг Декарта. Ведь отношение не было для них идеей и не имело, следовательно, реального существования. Кому же придет в голову обозначать буквой то, чего нет?»

Итак, «a = b R c» означает, что «а – то же, что отношение (т. е. R) b к c». Причем, как «b», так и «с» сами могут быть отношением к чему-то другому, а не только свойством, например: «b = d R h», «с = w R q». Тогда «a = (d R h) R (w R q)». … Сама же пара (a, b R c) симметрична, т. е. «a» во всех мирах заменима на «b R c» и «b R c» заменима на «a».

И если кого-то смущает, что «объект – это отношение отношений» и для кого Гегель – лишь несварение мыслей, тот пусть задастся вопросом: для равенства y=f(x), если «x» – объект, а «f» – отношение, что есть «y»? «Y» – то же самое, что …

1.2. Часть и целое

Не будем тревожить мышление «только математиков», ибо оно покоится с миром. … Поговорим лучше об элементе множества и множестве в терминах часть и целое. Может ли целое быть своей частью? Для случая, если частей больше одной, ответ однозначен: целое не может быть своей частью. А если она (часть) одна? Верно ли, что «a ≠ {a}»?

Ни у кого не вызывает возражений утверждение, что «a есть a», т. е. «a = a». Но как быть с формулировкой: «a» – это то, что «a»? Связка «… это то, что …» как раз группирует то, что находится после нее и именует эту совокупность тем, что находится перед ней. Например, синий квадрат – это то, что квадрат и синий: «синий квадрат» = {квадрат, синий}. Понятно, что «синий квадрат» – не то же самое, что «квадрат». И понятно, что «синий квадрат» – не то же самое, что «синий». Так вот, «синий квадрат» как целое через знак тождества связывает свои части, которые по отдельности не равны целому. Но квадрат как целое будет равен квадрату как части, если других частей нет. Иначе говоря, «а = {а}» вырождается в «а = а».

Среди аргументов, которые критикуют эту концепцию, следующие: парадокс Рассела и довод, кочующий по учебникам: «Так, пусть a = {a, b} содержит два элемента. Рассмотрим множество {a}, содержащее своим единственным элементом множество «a». Тогда «a» содержит два элемента, в то время как {a} – лишь один элемент, и потому отождествление этих двух множеств невозможно». … Посыл, как видно, изначально не верен: рассматривается «а = {а, b}», а не «а = {а}».

Парадокс Рассела не многим сложнее. Напомню, как он звучит: «Пусть К – множество всех множеств, которые не содержит себя в качестве своего элемента. Содержит ли К само себя в качестве элемента? Если да, то, по определению К, оно не должно быть элементом – противоречие. Если нет – то, по определению К, оно должно быть элементом К – вновь противоречие». … Не сложнее по той простой причине, что сразу утверждается «по определению К, оно не должно быть элементом».

Вообще говоря, считается, что источником парадоксов являются самореферентные структуры. Но это не так! Все они имеют не просто структуру с самореференцией, а самореференцию с отрицанием: «а = {а, не}», а не «а = {а}». … Предложение «а = {а, не}» противоречиво, а вот предложение вида «не-а = {а, не}» не противоречиво.

Применительно к парадоксу Рассела, это означает, что приравнивается изначально неравное «содержит в себе то, что не содержит в себе» или, короче, «содержит = {не, содержит}». Другими словами, он только потому является парадоксом, что приравнивает один из элементов множества к множеству, содержащему не только этот элемент.

Конечно, есть разница c тем, как общепринято формируется множество. Так, запись «м = {a, s | b}» означает, что множество «m» задается свойством «b» и содержит элементы «а» и «s». Но вот смысл отношения целого и частей здесь иной: «a = {b, c}, «s = {b, p}».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «В сути вещей»

Представляем Вашему вниманию похожие книги на «В сути вещей» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «В сути вещей»

Обсуждение, отзывы о книге «В сути вещей» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x