Зачем тогда публикуют в научной литературе такие ненадёжные данные? Ответ заключается в следующем. Если такая работа единична, то её результаты нельзя использовать в клинической практике (доказательной медицине). Однако если аналогичных работ опубликовано в научной литературе достаточно много, то с помощью специального приёма ( метаанализа ), разработанного в рамках доказательной медицины, результаты такого рода работ можно превратить в достоверный факт.
Рассмотрим пример метаанализа, для которого выбирают научные статьи, отвечающие определённым критериям надёжности организации исследования. При этом не во всех выбранных статьях были получены достоверные результаты некоторого воздействия, допустим, лечения. Результаты этих исследований обычно представляют в виде графика, который при достаточном воображении можно рассматривать как схематическое изображение леса (от англ. forest-plot – лес-график, рис. 2.1).
Рис. 2.1.Метаанализ работ, посвящённых влиянию глюкагоноподобного пептида-1 (ГПП-1) на аппетит
В левой части рисунка в виде столбца расположены выбранные для метаанализа статьи. Вертикальная линия по центру рисунка – линия отсутствия эффекта – отражает отсутствие изменения потребления калорий. Точка на графике – среднее снижение потребления калорий в каждом исследовании. Если точка расположена слева от линии отсутствия эффекта, то потребление калорий снизилось. Горизонтальные линии, проходящие через точки, – 95 % доверительный интервал. Другими словами, если горизонтальная линия не пересекает вертикальную линию отсутствия эффекта, то существующая вероятность эффекта (снижение потребления калорий) составляет 95 %.
Более содержательно о метаанализе можно прочитать в Интернете на сайте http://www.statsoft.ru/statportal/tabID_50/MId_449/ModeID_0/PageID_353/DesktopDefault.aspx, но в нашем случае важны не детали, а принцип метаанализа.
Итак, из рисунка видно, что во 2-й, 4-й, 5-й, 9-й и 10-й работах результаты были отрицательны – глюкагоноподобный пептид-1 достоверно не снижал аппетит. Хотя в них отмечена определённая тенденция к положительному эффекту (средняя величина находится слева от вертикальной черты). А в остальных работах был получен достоверно положительный эффект (1-я, 3-я, 6-я, 7-я, 8-я и 11-я работы).
Предположим, что недостоверные результаты – следствие недостаточно большой группы обследования. Тогда объединение групп больных из статей в единую большую группу (с достоверными и недостоверными результатами) может дать в сумме высокодостоверный результат – нижняя точка на графике. Отсюда и название – метаанализ, т. е. анализ результатов за пределами («мета») отдельных статей. В итоге делается следующий «логический» вывод. Поскольку достоверный результат метаанализа получен в результате объединения статей с достоверными и недостоверными результатами, то следует полагать, что во всех включённых в метаанализ научных работах исследовавшийся эффект положителен. Причём достоверно положительный результат метаанализа в значительно степени зависит от включённых в него работ с достоверным эффектом. Чем в большем числе работ получен положительный результат и чем он достовернее, тем достовернее доказательство эффективности воздействия в метаанализе. Однако эта логика довольно спорна. Для того чтобы убедится в этом, рассмотрим график детальнее.
На графике видно, что из выбранных для метаанализа работ четыре принадлежат одной и той же исследовательской группе (Gitswiller и др.). Причём именно эта группа исследователей получила наиболее убедительные положительные результаты, а поскольку это одна группа, то в анализ включены фактически не четыре работы, а одна. Тогда если предположить (в качестве мысленного эксперимента), что эта научная группа провела исследование тенденциозно, и исключить её результаты из анализа, то из оставшихся исследований будет невозможно скомбинировать достоверный результат. В итоге оказывается, что в большинстве работ получен отрицательный результат. А если учесть, что публиковать предпочитают положительные результаты, реально представленная в научной литературе информация далека от полноты, и метаанализ не является идеальным методом доказательства надёжности лечения или диагностики болезней.
Метаанализ был предложен эпидемиологами всего лишь для расчёта необходимого числа больных, включаемых в исследование, чтобы гарантировать статистически достоверные показатели планируемого исследования, а не для вынесения категорических и окончательных суждений. По этой причине результаты метаанализа должны быть лишь основой для планирования клинических экспериментов, в которых полученный при метаанализе результат следует ещё подтвердить. Итак, даже серьёзные научные исследования, результаты которых были подвергнуты метаанализу, следует воспринимать достаточно критично. Хотя нужно отметить, что метаанализ признан лучшим из инструментов доказательной медицины (табл. 2.1).
Читать дальше