У неприлично длинных сроков есть причины, и они делятся на фундаментальные и практические. Фундаментальные связаны с природой живых и квазиживых систем вроде вирусов, и главная из них — сложность. Вирусы и бактерии пытаются проникнуть в клетки других организмов миллионы лет. За это время паразиты выработали множество хитрых трюков, обманывающих иммунную систему и повышающих шансы вируса или бактерии как следует размножиться, а их невольные хозяева, в свою очередь, изобрели всевозможные способы защиты от «вторженцев». Некоторые примеры взаимодействия вирусов с клетками хозяина мы обсуждали в предыдущих главах, но в реальности их гораздо больше. И у разных патогенов эти грязные приемы разные, так как им нужно приспособиться не к клеткам вообще, а к конкретным типам клеток конкретного вида живых существ. Чтобы понять, какие именно трюки использует паразит, его нужно долго и тщательно изучать — не в последнюю очередь потому, что используемые хитрости могут влиять на эффективность потенциальной вакцины.
Сколько времени потребуется изучать вирус — предсказать невозможно: верхнего предела, очевидно, нет. Да, первые вакцины создавались по наитию, потому что у ученых не было ни знаний, ни возможностей как следует исследовать возбудителей. Чаще всего это были так называемые живые вакцины, то есть попросту ослабленные вирусы или бактерии (такие вакцины, собственно, и называют ослабленными, или аттенуированными). Они работали хорошо, но порой создателям не удавалось в достаточной мере истощить силы паразита, и вместо муляжа, который должен послужить снарядом для отработки иммунного ответа, человек получал хорошую дозу полноценного возбудителя. В случае тяжелых болезней вроде оспы или бешенства это нередко приводило к смерти.
Со временем люди научились создавать менее опасные типы вакцин — например, «мертвые» (они же инактивированные), когда вирус не ослабляют, а убивают, а еще позже и так называемые субъединичные, которые представляют собой отдельные фрагменты вируса. Такие вакцины гарантированно не могут вызвать инфекцию, но вырабатываемый после их введения иммунный ответ часто оказывается недостаточным для полноценной защиты. Чтобы понять, насколько хорошо безопасная вакцина готовит организм к встрече с настоящим врагом, необходимо время. И первым делом исследователи выясняют, на какую именно часть патогена нужно натаскивать иммунную систему, чтобы она выработала защиту, которая сработает и против полноценного вируса (дальше для экономии букв и страниц мы будем говорить только о вирусах, но в случае с бактериями смысл тот же). Для этого важно понять, на какой фрагмент вируса (ученые говорят «эпитоп») реагирует иммунитет при естественном заражении.
Не ловля блох
Ученые, создающие новые вакцины, так долго возятся с различными проверками не потому, что не умеют работать или пытаются состричь с государства побольше денег, как думают некоторые. Жесткие требования возникли не на пустом месте — это страховка от весьма неприятных последствий, которые могут наступить, если слишком поторопиться. И это не теоретические опасения: в истории внедрения вакцин было несколько печальных случаев, когда разработчики недостаточно тщательно подошли к тестированию и такое легкомыслие привело к реальным смертям. Первый произошел в 1955 году, когда компания Cutter Laboratories произвела партию «мертвой» — как они думали — вакцины от полиомиелита. Инактивированная вакцина Солка (названная по имени разработавшего ее американского вирусолога Джонаса Солка из Питтсбургского университета) представляла собой выращенный на линиях человеческих клеток и убитый формалином вирус полиомиелита. Однако в Cutter Laboratories нарушили некоторые стадии производственного процесса, и на рынок попал живой вирус. Результат — 40 000 заражений полиомиелитом среди привитых, 51 случай паралича и пять смертей. Еще 113 случаев паралича и пять смертей были зарегистрированы среди тех, кто контактировал с инфицированными детьми [286] E. R. Miller, P. L. Moro, M. Cano, and T. T. Shimabukuro, «Deaths following vaccination: What does the evidence show?» Vaccine , vol. 33, no. 29, pp. 3288–3292, Jun. 2015.
. После этой трагедии FDA резко ужесточило требования к проверкам для производителей вакцин, что неизбежно привело к удлинению сроков их производства.
Второй инцидент, намного более безобидный, случился в самом конце 1990-х, когда в США была зарегистрирована первая в мире вакцина от ротавируса RotaShield . Спустя несколько месяцев после того, как педиатры начали капать ее младенцам, врачи заметили увеличение числа госпитализаций по поводу инвагинации кишечника. Это редкая, но довольно серьезная патология, когда одна часть тонкой кишки как бы вкладывается в другую. При правильно поставленном диагнозе она лечится, так что никто из детей не умер. Расследование показало, что в предварительных испытаниях, которые проводила компания — производитель вакцины, повышенный риск инвагинации был замечен, однако из-за недостаточной выборки добровольцев его недооценили. RotaShield запретили к применению, а разработчики двух других ныне существующих вакцин — RotaTeq и Rotarix — организовали масштабные клинические испытания, чтобы определить вероятность инвагинации. Для этих вакцин риск оказался примерно в десять раз ниже, чем при использовании RotaShield . Учитывая, что потенциальная польза от антиротавирусной вакцины намного превышает возможные риски инвагинации (в 2015 году, до запуска новых вакцин, в мире было зарегистрировано 950 млн случаев вызванной ротавирусом острой диареи у детей до пяти лет; 500 000 малышей погибли), надзорные ведомства в сфере здравоохранения разрешили применять RotaTeq и Rotarix [287] M. O’Ryan, «Rotavirus Vaccines: a story of success with challenges ahead», F1000Research , vol. 6, p. 1517, Aug. 2017.
.
Читать дальше
Конец ознакомительного отрывка
Купить книгу