4. В треугольнике две стороны равны 10 и 12 см, а угол между ними 45°. Найдите площадь треугольника.
5. Точка М лежит на диагонали АС параллелограмма ABCD, а точка Н – на его стороне AD, причем AM: МС = 2:1, АН = HD. Выразите вектор MN через векторы а и р где вектор а равен вектору АВ и вектор p равен вектору AD.
1. Теорема косинусов (с выводом).
2. Виды движений на плоскости.
3. Стороны параллелограмма равны 8 и 10 см, угол между ними 60°. Найдите площадь параллелограмма.
4. Длина одного отрезка на 1 см больше второго и на 4 см больше третьего. Могут ли эти отрезки быть сторонами треугольника, периметр которого равен 10 см?
5. Каждая из боковых сторон и меньшее основание трапеции равны 5 см, а один из его углов равен 60°. Найдите радиус окружности, описанной около нее.
1. Теорема синусов (с выводом).
2. Признаки параллельных прямых (без доказательства).
3. Подобны ли два треугольника ABC и А1В1С1, если АС = 14 см, А1В1 = 22 см, В1С1 = 26 см, А1C1 = 28 см, АВ = 11 см, ВС = 13 см.
4. Сторона описанного правильного четырёхугольника на ?3 больше стороны правильного треугольника, вписанного в ту же окружность. Найдите сторону четырёхугольника.
5. Окружность с центром О касается сторон МК, КТ и ТМ треугольника МКТ в точках А, В и С соответственно. Найдите углы треугольника ABC, если угол МКТ = 42°, угол КМТ = 82°.
1. Многоугольники. Правильные многоугольники. Основные формулы для правильных n-угольников (с выводом).
2. Формула Герона (без вывода).
3. Через вершину А треугольника ABC с прямым углом С проведена прямая AD, параллельная стороне ВС. Найдите угол В треугольника, если угол DAB = 43°.
4. В треугольнике АВС АВ = 15 м, АС = 20 м, ВС = 32 м. На стороне АВ отложен отрезок AD = 9 м, а на стороне АС – отрезок АЕ = 12 м. Найдите DE.
5. Каким должен быть радиус окружности, чтобы ее длина была равна разности длин двух окружностей с радиусами 37 и 15 см?
1. Касательная к окружности, ее свойство (с доказательством).
2. Формулы площади треугольника и трапеции (без вывода).
3. Один из углов прямоугольного треугольника равен 30°, а сумма гипотенузы и меньшего катета равна 36 см. Найдите стороны треугольника.
4. Через вершину С параллелограмма ABCD проведена прямая HP так, что точка С лежит между точками Н и Р, которые принадлежат прямым АВ и AD соответственно:
а) докажите, что BH ? DP = ВС ? CD;
б) найдите косинус угла CDP, если синус угла НВС = 3/5.
5. Через центр квадрата ABCD проведены две взаимно перпендикулярные прямые, каждая из которых пересекает противоположные стороны квадрата. Докажите, что отрезки этих прямых, заключенные внутри квадрата, равны между собой.
1. Свойство биссектрисы треугольника (с доказательством).
2. Прямая, обратная, противоположная и обратная к противоположной теоремы. Сущность метода доказательства от противного.
3. Найдите углы правильного десятиугольника.
4. Даны точки М(0; 4), Р (2; 1), К (2; -2), Т (0; -5):
а) докажите, что четырёхугольник МРКТ – трапеция;
б) равны ли углы МРК и РКT?
5. Из вершины М тупого угла параллелограмма MNKP проведены перпендикуляры МН1 и МН2 к прямым NK и КР. Найдите углы параллелограмма, если угол Н1МН2 = 70°.
1. Свойство точки пересечения медиан (с доказательством).
2. Теорема о пропорциональных отрезках (без доказательства).
3. BD является высотой равнобедренного треугольника ABC (АВ = ВС); угол ABD = 17°, AD = 9 см. Найдите углы DВС, ABC и основание АС.
4. В прямоугольнике МНРК диагонали пересекаются в точке О, РК = 2, угол МОК = 120°. Вычислите скалярное произведение векторов.
5. В треугольнике ABC АВ = 4,2 см, АС = 2,7 см, длина ВС выражается целым числом. Найдите её.
§ 3. Экзаменационный комплект № 3 (углубленный уровень)
1. Признаки равенства треугольников.
2. Соотношение между вписанным и центральным углами в окружности, опирающимися на одну дугу.
3. В параллелограмме ABCD угол BCD равен 60°, длина стороны АВ равна а. Биссектриса угла BCD пересекает сторону AD в точке N. Найдите площадь треугольника NCD.
4. Дан правильный 30-угольник A1A2...A30 с центром О. Найдите угол между прямыми ОА3 и А1А4.
1. Свойства равнобедренного треугольника.
2. Докажите, что если через произвольную точку S провести две прямые, пересекающие окружность в точках А, В и С, D соответственно, то AS ? BS = CS ? DS.
3. Квадрат со стороной 3 см срезан по углам так, что образовался правильный восьмиугольник. Найдите сторону восьмиугольника.
Читать дальше
Конец ознакомительного отрывка
Купить книгу