Бизенц Торра - Том 15. От абака к цифровой революции. Алгоритмы и вычисления

Здесь есть возможность читать онлайн «Бизенц Торра - Том 15. От абака к цифровой революции. Алгоритмы и вычисления» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 15. От абака к цифровой революции. Алгоритмы и вычисления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 15. От абака к цифровой революции. Алгоритмы и вычисления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Алгоритмы управляют работой окружающих нас электронных устройств, благодаря которым становится возможным существование нашего удивительного цифрового мира.
По сути, компьютерная программа — не более чем алгоритм, составленный на языке, понятном компьютеру. Однако царствование алгоритмов в вычислительной технике — лишь краткий эпизод долгой и интересной истории, которая началась вместе с зарождением вычислений. В этой книге рассказывается история алгоритмов, а также описываются важнейшие особенности вычислений и вычислительной техники, начиная от первых счетных палочек и заканчивая компьютерами, без которых невозможно представить современный мир.

Том 15. От абака к цифровой революции. Алгоритмы и вычисления — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 15. От абака к цифровой революции. Алгоритмы и вычисления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Чтобы продемонстрировать пример использования этого устройства, рассмотрим умножение числа 35672. Мы выбрали это число, чтобы показать применение всех строк таблицы. Нужно последовательно расположить палочки, соответствующие пяти цифрам этого числа, то есть сначала — палочку под номером 3, затем под номером 5, далее — 6, 7 и 2. Простое наблюдение за положением палочек позволяет увидеть, что в каждом ряду будут записаны результаты умножения 35 672 на все числа от 1 до 9.

Следовательно, чтобы умножить 35 672 на 4, нужно взять числа из четвертого ряда:

1/2 2/0 2/4 2/8 0/8.

Далее нужно сложить соседние числа пар, разделенные наклонной чертой:

1/2 + 2/0 + 2/4 + 2/8 + 0/8.

Получим:

1/4/2/6/8/8.

Таким образом, результат умножения 35672 на 4 равен 142688. Вы можете проверить его правильность вручную или на калькуляторе.

35 672·4 = 142 688.

Умножение 35 672 на 4 с помощью палочек Непера Умножение многозначных чисел - фото 82

Умножение 35 672 на 4 с помощью палочек Непера.

Умножение многозначных чисел выполняется аналогично современному способу: каждая цифра второго числа последовательно умножается на первое число, после чего полученные результаты складываются. Промежуточные результаты умножения получаются по уже описанной нами схеме. Следует отметить, что все необходимые промежуточные результаты находятся в одной и той же таблице. Например, чтобы умножить 35 672 на 436, нужно выполнить расчеты по описанной нами схеме в рядах 4, 3 и 6. Мы получим несколько чисел, которые нужно записать друг под другом так, чтобы диагональные линии оказались расположены в ряд.

При таком расположении чисел умножение 35 672 на 436 сводится к сложению - фото 83

При таком расположении чисел умножение 35 672 на 436 сводится к сложению промежуточных результатов, как показано ниже. Сначала записаны промежуточные результаты умножения, затем суммы пар чисел, разделенных диагональными чертами и, наконец, результат, полученный переносом значений в старший разряд там, где это необходимо.

Выполните эти действия на калькуляторе и убедитесь что результат абсолютно - фото 84

Выполните эти действия на калькуляторе и убедитесь, что результат абсолютно верен:

35 672·436 = 15 552 992.

Заметьте, что числа в строках соответствуют промежуточным результатам, получаемым при известном нам способе умножения столбиком. Эти промежуточные результаты равны:

Однако палочки Непера использовались не только для умножения Для деления - фото 85

Однако палочки Непера использовались не только для умножения. Для деления одного большого числа на другое достаточно расположить палочки на столбцах, соответствующих цифрам делителя. В строках таблицы будут записаны числа, кратные делителю, которые помогут быстрее получить результат деления.

Джон Непер также является автором еще одного важного открытия — логарифмов. Этот шотландский математик обнаружил, что с их помощью можно свести сложные математические операции к более простым. Умножение сводилось к сложению, деление — к вычитанию, возведение в степень — к умножению, извлечение корней — к делению. Это чрезвычайно упростило выполнение сложных расчетов вручную и дало мощный толчок развитию математики.

log( a · b ) = log( а ) + log( b )

log( a / b ) = log( a ) — log( b )

log( a b ) = b · log( a ).

Следовательно, для вычисления произведения а · Ь достаточно вычислить e log( a ) + log( b )

На основе логарифмов была создана логарифмическая линейка — еще одно важнейшее вычислительное устройство. Ее автором был британский математик Уильям Отред(1574–1660) , который впервые стал обозначать умножение знаком X, функции синуса и косинуса — sin и cos соответственно. Этот математик использовал устройство, разработанное Эдмундом Гантером, в котором применялась одна логарифмическая шкала (в логарифмической линейке используются две шкалы). Позднее, в 1859 году, француз Амадей Манхейм представил ряд улучшений, и логарифмическая линейка обрела современный вид.

Портрет Уильяма Отреда который считается изобретателем логарифмической - фото 86

Портрет Уильяма Отреда, который считается изобретателем логарифмической линейки.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 15. От абака к цифровой революции. Алгоритмы и вычисления»

Представляем Вашему вниманию похожие книги на «Том 15. От абака к цифровой революции. Алгоритмы и вычисления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 15. От абака к цифровой революции. Алгоритмы и вычисления»

Обсуждение, отзывы о книге «Том 15. От абака к цифровой революции. Алгоритмы и вычисления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x