Бизенц Торра - Том 15. От абака к цифровой революции. Алгоритмы и вычисления

Здесь есть возможность читать онлайн «Бизенц Торра - Том 15. От абака к цифровой революции. Алгоритмы и вычисления» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 15. От абака к цифровой революции. Алгоритмы и вычисления: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 15. От абака к цифровой революции. Алгоритмы и вычисления»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Алгоритмы управляют работой окружающих нас электронных устройств, благодаря которым становится возможным существование нашего удивительного цифрового мира.
По сути, компьютерная программа — не более чем алгоритм, составленный на языке, понятном компьютеру. Однако царствование алгоритмов в вычислительной технике — лишь краткий эпизод долгой и интересной истории, которая началась вместе с зарождением вычислений. В этой книге рассказывается история алгоритмов, а также описываются важнейшие особенности вычислений и вычислительной техники, начиная от первых счетных палочек и заканчивая компьютерами, без которых невозможно представить современный мир.

Том 15. От абака к цифровой революции. Алгоритмы и вычисления — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 15. От абака к цифровой революции. Алгоритмы и вычисления», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Страница Библии Гутенберга Гравюра из Жемчужины философии 1508 - фото 73

Страница Библии Гутенберга.

* * *

Гравюра из Жемчужины философии 1508 Грегора Рейша на которой изображены - фото 74

Гравюра из «Жемчужины философии» (1508) Грегора Рейша, на которой изображены Боэцийи Пифагор, состязающиеся в вычислениях. За ними сверху наблюдает Арифметика. Обратите внимание: Боэций (слева) использует арабские цифры, Пифагор производит расчеты с помощью абака.

Доказательством важности математических текстов по арифметике в торговле служит тот факт, что важнейший труд Евклида «Начала» был отпечатан лишь в 1482 году на латинском языке под названием Elementa Geometriae . «Арифметика» Боэция была отпечатана в 1488 году. Первой печатной книгой по алгебре стала «Сумма арифметики, геометрии, дробей, пропорций и пропорциональности» ( La primera algebra impresa fue la Summa de Arithmetica, Geometrica, Geometria, Proportion! et Proportionalita ) Луки Пачоли, опубликованная в Венеции в 1494 году.

В течение всего XVI века печаталось множество текстов с пояснениями и комментариями к этой книге. Они пользовались большой популярностью, так как труд Пачоли был достаточно сложен для понимания. Несмотря на всю важность этих работ, большинство книг того времени было посвящено арифметике в торговле.

Портрет математика Луки Пачоликисти Якопо де Варбари выполненный около 1496 - фото 75

Портрет математика Луки Пачоликисти Якопо де Варбари, выполненный около 1496 года.

* * *

ЗАДАЧА ПО АРИФМЕТИКЕ В ТОРГОВЛЕ

Манускрипт под номером 102 (A. III 27), хранящийся в муниципальной библиотеке итальянского города Сиены, — один из четырех манускриптов, посвященных арифметике, опубликованных до 1500 года, которые сохранились до наших дней. В нем упоминается следующая задача: «Если хочешь знать о человеке, сколько денег в его кармане, поступай так: предположи, что у него 4, скажи ему удвоить их число, и получишь 8, затем добавить 5 и получишь 13, затем умножить всё на 5 и получишь 65, добавить 10 и получишь 75, затем умножить на 10 и получишь 750. Теперь вычти 350 и получишь 400, что соответствует 4, и каждая сотня соответствует числу, посему 400 будет 4».

* * *

Простые и десятичные дроби

Когда арабские цифры попали на Запад, изначально с их помощью записывались только целые числа. Дробные числа по-прежнему записывались в шестидесятеричной системе счисления, как в древней Вавилонии. Кушьяр ибн Лаббан в своей книге «О началах индийской арифметики» обозначает дробные числа как градусы: 1/60 он называет минутой ( daqa’iq ), 1/(602) — секундой ( thawani ), 1/(603) — терцией ( thawalith ), 1/(604) — квартой ( rawabf ) и так далее. Уже тогда они обозначались теми же символами, которые используются и сейчас: градусы обозначались знаком °, минуты — ', секунды — ", терции — "'так далее.

Лишь в XVI веке Симон Стевин написал трактат, в котором подчеркивалась важность десятичной нотации, в том числе для записи дробей. Он обратился к властям и начал кампанию по распространению этой системы. До Стевина десятичная нотация уже применялась для записи дробей, однако использовалась не повсеместно. Персидский математик и астроном Гияс ад-Дин ал-Каши(1380–1429) , один из руководителей Самаркандской обсерватории, использовал эту нотацию за 100 лет до Стевина в своих трудах по тригонометрии и при вычислении числа 71. Ал-Каши также был известен так называемый треугольник Паскаля (таблица Тартальи).

* * *

СИМОН СТЕВИН

Фламандский математик, инженер, физик и семиолог Симон Стевин(1548–1620) в 1585 году опубликовал книгу DeThiende («Десятая»). В этой книге объяснялась десятичная нотация и способы вычисления расчетов в этой нотации. Стевин первым признал существование отрицательных чисел, полученных им при решении задач. Он также создал алгоритм нахождения наибольшего общего делителя двух многочленов. Он писал все труды на голландском языке, чтобы их могли понять ремесленники. Его книги были написаны очень просто и пользовались большой популярностью, что способствовало распространению десятичной системы счисления.

Число π Как мы уже упоминали персидский математик алКаши занимался - фото 76

* * *

Число π

Как мы уже упоминали, персидский математик ал-Каши занимался вычислением числа π . В то время как Цзу Чунчжи вычислил значение π , использовав правильный многоугольник с 12288 = 3·2 12сторонами, ал-Каши использовал многоугольник с числом сторон, равным 805306368 = 3·2 28, и верно вычислил 14 знаков π . Это произошло в 1430 году.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 15. От абака к цифровой революции. Алгоритмы и вычисления»

Представляем Вашему вниманию похожие книги на «Том 15. От абака к цифровой революции. Алгоритмы и вычисления» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 15. От абака к цифровой революции. Алгоритмы и вычисления»

Обсуждение, отзывы о книге «Том 15. От абака к цифровой революции. Алгоритмы и вычисления» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x