Остальные конфигурации будут более беспорядочными, чем эта, поскольку нет никаких ограничений, связанных с тем, как следует располагать шашки. Например, конфигурации, показанные ниже, более беспорядочны, чем предыдущая.
Вычислим общую сумму возможных конфигураций всех шашек. Поскольку нам все равно, белая шашка или черная и где она находится, рассмотрим их все одновременно. Для первой у нас будет 64 возможности, для второй — 63, и так далее.
Итак, общее число конфигураций равно 64! Вероятность получения упорядоченной конфигурации равна числу упорядоченных конфигураций, разделенному на общее число конфигураций:
Как видите, упорядоченное положение имеет очень малую вероятность, а хаотичные состояния, напротив, очень вероятны. Поскольку состояния, характеризующиеся высокой энтропией, а также хаотичные состояния имеют очень высокую вероятность, мы можем связать их друг с другом и заключить, что состояния высокой энтропии более хаотичны.
Энтропия как непредсказуемость
Как мы только что увидели, энтропия пропорциональна числу микросостояний, характерных для макросостояния, в котором находится система. Однако даже зная макросостояние, мы не можем знать микросостояние, и чем выше энтропия системы, тем ниже ее предсказуемость. Предположим, что у нас есть система с 1000 различных микросостояний. Если мы знаем, что в этот момент она находится в первом, мы можем быть уверены только в том, что в следующий момент она будет находиться в одном из других 999. Но если у нас есть система только из десяти состояний, мы знаем, что есть только девять возможностей, начиная с текущего момента, то есть такая система более предсказуема.
Можем пойти еще дальше и задать вопрос, какова минимально возможная энтропия для любой системы и какому количеству микросостояний она соответствует.
Вспомним, что энтропия равна:
S = k · log W ,
где функция log — это логарифм, функция, обратная экспоненте. Предположим, что у нас только одно микросостояние: в этом случае логарифм единицы равен нулю, поскольку любое число, возведенное в нулевую степень, равно единице. Итак, энтропия одного микросостояния равна нулю. С точки зрения непредсказуемости это справедливо: нет более предсказуемой системы, чем та, у которой только одно состояние. Ее непредсказуемость точно равна нулю.
Энтропия как степень неосведомленности
Есть и другой способ понимания энтропии, который может быть адаптирован для применения за пределами физики — в рамках теории информации. Речь идет о понимании энтропии как недостающей информации о системе, то есть о степени нашей неосведомленности.
Как было видно в предыдущей главе, обычно мы знаем давление, температуру и объем газа, но при этом не знаем всего остального, то есть мы обладаем смехотворным количеством информации, необходимой для описания состояния системы.
Пусть даже эта информация — единственно значимая для прогнозирования, но она остается крайне малой по сравнению со всей информацией о рассматриваемом газе. Главную роль в способе описания энтропии снова играет число доступных микросостояний. Если в системе миллион состояний и мы не знаем, в каком из них она находится, степень нашей неосведомленности намного больше, чем если бы в ней было только десять состояний. Итак, мы знаем о системе с высокой энтропией намного меньше, чем о системе с низкой энтропией.
Какой же смысл в том, чтобы принимать энтропию за информацию? Информации нужен наблюдающий субъект — это не что-то, что можно потрогать. Когда мы говорим «энтропия системы — это степень нашей неосведомленности о ней», кажется, будто мы утверждаем, что энтропия не имеет реального существования во Вселенной, это просто человеческое понятие, которое измеряет то, что мы знаем, и не более.
Действительно, есть системы, для которых понятие энтропии не имеет смысла. В системе, состоящей из предмета, прикрепленного к пружине, и самой пружины, нет никакой энтропии: само это понятие неприменимо к ситуации. Энтропия — макроскопическая величина и сама по себе применима только для скоплений частиц. Однако в фундаментальных законах Вселенной о ней нет никакого упоминания: речь идет о статистическом понятии, которое помогает нам осмыслить некоторые характеристики сложных систем.
Читать дальше