Эдуардо Арройо - Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики

Здесь есть возможность читать онлайн «Эдуардо Арройо - Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Возможно ли, заглянув в пустой сосуд, увидеть карту нашей Вселенной? Ответ: да! Ведь содержимое пустого (на первый взгляд) сосуда — это бурлящий мир, полный молекул, которые мчатся с головокружительными скоростями. А поведение молекул газа иллюстрирует многочисленные математические теории, принципиально важные для понимания мироустройства. Именно исследования свойств газа позволили ученым ближе рассмотреть такие сложные понятия, как случайность, энтропия, теория информации и так далее. Попробуем и мы взглянуть на Вселенную через горлышко пустого сосуда!

Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Каждый член статистической суммы пропорционален вероятности найти частицу с - фото 74

Каждый член статистической суммы пропорционален вероятности найти частицу с такой энергией, таким образом, статистическая сумма кодифицирует всю информацию о нашей системе. Благодаря этому мы можем использовать ее для интересующих нас расчетов: например, общей энергии или вероятности нахождения газа в состоянии, отличном от наиболее вероятного.

Газ не имеет памяти

Важное свойство статистической суммы заключается в том, что ее состояние не зависит от прошлого. Газ не помнит того, что случилось две секунды назад, и его изменение абсолютно не зависит от этого — это известно как Марковское свойство, и им обладает любая система, которую можно описать с помощью статистической суммы.

То, что газ обладает Марковским свойством, означает, что как только он придет в состояние равновесия, будет невозможно узнать, каким образом он в него пришел: информация, касающаяся прошлого газа, исчезнет. Два газа одного вещества одной и той же температуры, давления и объема неотличимы, даже если один пришел к этому состоянию с помощью заморозки, а другой — путем разогрева. В других классических системах, таких как бильярдные шары, Марковское свойство не соблюдается: всегда можно восстановить последовательность. В случае с газом теоретически это также можно было бы сделать, но на практике поведение этого состояния материи непредсказуемо.

Марковское свойство довольно полезно в некоторых областях, например в таких как искусственный интеллект, когда необходимо добиться того, чтобы компьютер рассуждал, словно человек, а это обязывает программиста допустить в рассуждениях машины определенную степень случайности. Один из способов сделать это — взять законы логики и применить их для получения вероятностного поведения (такой способ называется логической сетью Маркова).

Пример логического закона — это принцип транзитивности: если А предполагает В , а В предполагает С , то А предполагает С . Однако в логике нет места неопределенности: А либо истинно, либо ложно, но оно не может быть истинным частично. Программа искусственного интеллекта должна уметь управлять неопределенностью, а для этого ей нужно адаптировать законы логики к вероятности. Например, у А может быть только одна вероятность быть истинным. Кроме того, А может предполагать В только иногда, и то же самое может происходить с С . Тогда мы получим, например, такую логическую цепочку: если А обычно предполагает В , а В иногда предполагает С , то А иногда предполагает С . Этот тип вероятностных систем может быть описан с помощью статистических сумм, похожих на те, что мы вывели для газов.

И вновь идея, рожденная в лоне физики, была адаптирована математиками и использована для функций, очень мало связанных с исходным предназначением. Для решения практической задачи был найден математический инструмент, который, оказывается, может служить гораздо более широким целям, чем предполагалось вначале.

В следующей главе будет рассмотрен потрясающей пример этого явления: как понятие энтропии, изначально введенное для изучения работы паровой машины, стало использоваться для разработки математической теории информации.

Глава 4

Информация и хаос

Изучение газовой динамики началось не с теории атома, а развивалось независимо в течение нескольких десятилетий, пока Больцману не удалось соединить механику, изучавшую движение частиц, с термодинамикой, которая занимается такими явлениями, как тепло и температура.

До этих пор законы, управлявшие газами, открывались эмпирически. Например, было известно, что давление газа в сосуде увеличивается с ростом температуры. Было также известно о соответствии между теплом и энергией: можно увеличить температуру жидкости, поставив ее на огонь или даже просто помешивая жидкость палочкой. Значит, тепло — это другая форма энергии.

Связь между теплом и энергией сделала возможным появление двигателей, то есть машин, которые превращают тепло в энергию механически с помощью расширения и сжатия газов. В автомобиле бензин сжигается, чтобы привести машину в движение. Энергия, хранящаяся в топливе, превращается в кинетическую энергию автомобиля. Вскоре было открыто, что превращение тепла в механическую энергию несовершенно, потому что всегда связано с потерями энергии. В целом при трансформации энергии одного типа в энергию другого типа в итоге получается немного меньше полезной энергии, чем в начале процесса. Это довольно нежелательная ситуация, поскольку двигатель, теряющий часть энергии, требует больше топлива, а топливо дорогое, так что инженеры искали способ создания более эффективных двигателей с нулевыми потерями энергии. Но эта цель так и не была достигнута.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики»

Представляем Вашему вниманию похожие книги на «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики»

Обсуждение, отзывы о книге «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x