Эдуардо Арройо - Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики

Здесь есть возможность читать онлайн «Эдуардо Арройо - Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Возможно ли, заглянув в пустой сосуд, увидеть карту нашей Вселенной? Ответ: да! Ведь содержимое пустого (на первый взгляд) сосуда — это бурлящий мир, полный молекул, которые мчатся с головокружительными скоростями. А поведение молекул газа иллюстрирует многочисленные математические теории, принципиально важные для понимания мироустройства. Именно исследования свойств газа позволили ученым ближе рассмотреть такие сложные понятия, как случайность, энтропия, теория информации и так далее. Попробуем и мы взглянуть на Вселенную через горлышко пустого сосуда!

Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

* * *

Хотя статистики Ферми — Дирака и Бозе — Эйнштейна были разработаны для работы с физическими явлениями, их применение (впрочем, это справедливо для любого хорошего математического инструмента) вышло далеко за пределы физики. Например, статистика Бозе — Эйнштейна используется при изучении комплексных сетей.

Комплексную сеть можно рассматривать как ряд узлов, связанных между собой некоторыми законами, регулирующими появление и связь новых узлов. Существует большое количество систем, которые можно смоделировать как комплексные сети, например группа друзей какого-то человека: каждый индивид связан со своими друзьями, которые, в свою очередь, связаны с другими, и эти связи образуют развитую сеть. Любопытный результат теории комплексных сетей состоит в том, что у человека обычно меньше друзей, чем у его друзей в среднем. Это можно объяснить тем, что некоторые узлы сети стремятся сконцентрировать на себе множество связей, и, следовательно, вероятность быть связанным с таким узлом выше, чем с узлом с небольшим количеством связей.

Это справедливо и для числа людей, с которыми у человека были в течение жизни любовные отношения: теория комплексных сетей утверждает, что в среднем у партнера таких отношений было больше. Это связано с тем, что гораздо вероятнее образовать пару с человеком, у кого было много других партнеров, чем с тем, у кого их было очень мало.

Теорию сетей можно использовать и для моделирования мозга, при этом нейроны рассматриваются как узлы, а также для того, чтобы математически представить связи между людьми в социальных сетях или объяснить число ссылок между сайтами. Другое важное применение, возникшее совсем недавно, заключалось в анализе концентрации богатства: Джеймс Глаттфельдер (1972) провел исследование, в котором пытался выяснить, кому принадлежит большинство предприятий планеты.

Для этого он использовал комплексную сеть, в которой узлы были компаниями или индивидами, а связи между узлами устанавливались в зависимости от процентного соотношения владения. Глаттфельдер выяснил, что 43 тысячи проанализированных компаний контролируются одним процентом членов общества, образуя взаимосвязанную и нестабильную сеть.

В 2001 году Джинестра Бьянкони, будучи еще аспиранткой Университета Нотр-Дам, поняла, что существуют идеальные параллели между комплексными сетями и конденсатами Бозе — Эйнштейна. Если представить узлы сети в качестве вариантов доступной энергии, а связи между ними — в качестве частиц, становится очевидно, что сеть ведет себя как бозонный газ при низкой температуре: частицы стремятся к состояниям с более низкой энергией. Этот эффект проявляется во всех типах сетей, как социальных, так и экономических. Например, в случае с интернетом и рынком существует эффект, называемый преимуществом первого пользователя, при котором первая компания, создающая некоторый тип продукта, или первые пользователи социальной сети получают наибольшее количество преимуществ. Это также соответствует нашей модели, в которой этих первых пользователей можно считать состояниями низкой энергии системы, что создает скопление частиц или появление связей между ними. Пользуясь этой моделью, можно объяснить различные вещи: от структуры друзей в социальных сетях до связи между ссылками на сайты.

Статистические суммы

Изучение газовой динамики подтолкнуло создание других математических инструментов, имеющих большое значение для изучения любого типа систем. Пример этому — так называемые статистические суммы газа. Для того чтобы понять, что такое статистическая сумма, сначала мы должны остановиться на некоторых тонкостях микро- и макросостояний.

Вспомним, что число микросостояний, совместимых с макросостоянием, задано различными комбинациями энергии, которую могут иметь молекулы. Как только мы получили это значение, можно задать вопрос, каково распределение энергии, которая дает наибольшую вероятность, то есть какое из макросостояний наиболее вероятно. В конце концов мы обнаружим, что скорости частиц должны быть распределены определенным образом, как было показано ранее.

Исходя из распределения скоростей, можно сделать вывод, что число частиц с определенным уровнем энергии при увеличении энергии уменьшается. Значит, можно создать математический объект, который бы кодифицировал все возможности получения каждого значения энергии. Этот объект называется статистической суммой и выражается также с помощью экспоненциальной функции. Если энергия частицы i равна Е i , то статистическая сумма Zравна:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики»

Представляем Вашему вниманию похожие книги на «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики»

Обсуждение, отзывы о книге «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x